Search for New antineoplastic agents based on structural modifications of steroidal 5α-reductase, 17β-hydroxysteroid dehydrogenase, and 17α-hydroxylase/17,20-lyase inhibitors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review discusses recent research on optimizing the structure of existing steroidal inhibitors of three key steroidogenic enzymes (5α-reductase, 17β-hydroxysteroid dehydrogenase [17β-HSD], and 17α-hydroxylase/17,20-lyase [CYP17A1]) used as antineoplastic agents. Furthermore, the review examines the prospects for developing new antineoplastic agents based on the obtained optimized structures. The review consists of three chapters and includes the structures of 209 new compounds, as well as laboratory and preclinical data to assess their therapeutic potential. The findings indicate that modifying the structure of the assessed steroidal inhibitors as a promising approach to developing new antineoplastic agents. The review did not include research on optimizing the structure of non-steroidal 5α-reductase, 17β-HSD, and CYP17A1 inhibitors. The search was performed in six online databases: Scopus, PubMed, Web of Science, SciFinder, ScienceDirect, and Google Scholar, and focused on existing 5α-reductase, 17β-hydroxysteroid dehydrogenase, and CYP17A1 inhibitors. The initial search was conducted using relevant keywords. The clarifying search was conducted using the following keywords: производные андростана (androstane derivatives), абиратерон (abiraterone), финастерид (finasteride), противоопухолевая активность (antineoplastic activity), etc. After removing duplicates and non-full-text articles, the review included 92 publications.

About the authors

Andrei M. Korolchuk

Orechovich Institute of Biomedical Chemistry

Email: and.koro1chuk@gmail.com
ORCID iD: 0000-0001-6096-6382
SPIN-code: 4194-5564
Russian Federation, Moscow

Olga Yu. Reshmina

Orechovich Institute of Biomedical Chemistry

Email: reshmina@mail.ru
ORCID iD: 0009-0005-8290-252X
Russian Federation, Moscow

Alexander Yu. Misharin

Orechovich Institute of Biomedical Chemistry

Email: amisharin48@gmail.com
ORCID iD: 0000-0002-5328-716X
Russian Federation, Moscow

Vladimir A. Zolottsev

Orechovich Institute of Biomedical Chemistry

Author for correspondence.
Email: vazolottsev@mail.ru
ORCID iD: 0000-0002-2067-5887
SPIN-code: 7787-5961

Cand. Sci. (Chemistry)

Russian Federation, Moscow

References

  1. Flores E, Bratoeff E, Cabeza M, et al. Steroid 5α-Reductase Inhibitors. Mini Reviews in Medicinal Chemistry. 2003;3(3):225–237. doi: 10.2174/1389557033488196
  2. Schmidt LJ, Tindall DJ. Steroid 5α-reductase inhibitors targeting BPH and prostate cancer. The Journal of Steroid Biochemistry and Molecular Biology. 2011;125(1–2):32–38. doi: 10.1016/j.jsbmb.2010.09.003
  3. Sun J, Xiang H, Yang L-L, Chen J-B. A review on steroidal 5α-reductase inhibitors for treatment of benign prostatic hyperplasia. Current Medicinal Chemistry. 2011;18(23):3576–3589. doi: 10.2174/092986711796642517
  4. Aggarwal S, Thareja S, Verma A, Bhardwaj TR, Kumar M. An overview on 5α-reductase inhibitors. Steroids. 2010;75(2):109–153. doi: 10.1016/j.steroids.2009.10.005
  5. Salvador JAR, Pinto RMA, Silvestre SM. Steroidal 5α-reductase and 17α- hydroxylase/17,20-lyase (CYP17) inhibitors useful in the treatment of prostatic diseases. Journal of Steroid Biochemistry and Molecular Biology. 2013;137:199–222. doi: 10.1016/j.jsbmb.2013.04.006
  6. Amaral С, Varela С, Correia-da-Silva G, et al. New steroidal 17β-carboxy derivatives present anti-5α-reductase activity and anti-proliferative effects in a human androgen-responsive prostate cancer cell line. Biochimie. 2013;95(11):2097–2106. doi: 10.1016/j.biochi.2013.07.023
  7. Cortes-Benhez F, Cabeza M, Ramhez-Apan MT, Alvarez-Manrique B, Bratoeff E. Synthesis of 17β-N-arylcarbamoylandrost-4-en-3-one derivatives and their antiproliferative effect on human androgen-sensitive LNCaP cell line. European Journal of Medicinal Chemistry. 2016;121:737–746. doi: 10.1016/j.ejmech.2016.05.059
  8. Cabeza M, Zambrano A, Heuze I, et al. Novel C-6 substituted and unsubstituted pregnane derivatives as 5α-reductase inhibitors and their effect on hamster flank organs diameter size. Steroids. 2009;74(10–11):793–802. doi: 10.1016/j.steroids.2009.04.009
  9. Garrido M, Bratoeff E, Bonilla D, et al. New steroidal lactones as 5α-reductase inhibitors and antagonists for the androgen receptor. Journal of Steroid Biochemistry and Molecular Biology. 2011;127(3–5):367–373. doi: 10.1016/j.jsbmb.2011.07.001
  10. Silva-Ortiz AV, Bratoeff E, Ramirez-Apan T, et al. Synthesis and activity of novel 16-dehydropregnenolone acetate derivativesas inhibitors of type 1 5α-reductase and on cancer cell line SK-LU-1. Bioorganic & Medicinal Chemistry. 2015;23(24):7535–7542. doi: 10.1016/j.bmc.2015.10.047
  11. Silva-Ortiz AV, Bratoeff E, Ramirez-Apan T, et al. Synthesis of new derivatives of 21-imidazolyl-16-dehydropregnenolone as inhibitors of 5α-reductase 2 and with cytotoxic activity in cancer cells. Bioorganic & Medicinal Chemistry. 2017;25(5):1600–1607. doi: 10.1016/j.bmc.2017.01.018
  12. Lao K, Sun J, Wang C, et al. Design, synthesis and biological evaluation of novel 3-oxo-4-oxa-5α-androst-17β-amide derivatives as dual 5α-reductase inhibitors and androgen receptor antagonists. Bioorganic & Medicinal Chemistry Letters. 2017;27(17):4212–4217. doi: 10.1016/j.bmcl.2017.05.078
  13. Lao K, Sun J, Wang C, et al. Design, synthesis and biological evaluation of novel androst-3,5-diene-3-carboxylic acid derivatives as inhibitors of 5α-reductase type 1 and 2. Steroids. 2017;124:29–34. doi: 10.1016/j.steroids.2017.05.011
  14. Poirier D. Inhibitors of 17β-Hydroxysteroid Dehydrogenases. Current Medicinal Chemistry. 2003;10(6):453–477. doi: 10.2174/0929867033368222
  15. Maltais R, Tremblay MR, Ciobanu LC, Poirier D. Steroids and Combinatorial Chemistry. Journal of Combinatorial Chemistry. 2004;6(4):443–456. doi: 10.1021/cc030118m
  16. Poirier D. New cancer drugs targeting the biosynthesis of estrogens and androgens. Drug Development Research. 2008;69(6):304–318. doi: 10.1002/ddr.20263
  17. Poirier D. Advances in Development of Inhibitors of 17β-Hydroxysteroid Dehydrogenases. Anti-Cancer Agents in Medicinal Chemistry. 2009;9(6):642–660. doi: 10.2174/187152009788680000
  18. Poirier D. 17β-Hydroxysteroid dehydrogenase inhibitors: a patent review. Expert Opinion on Therapeutic Patents. 2010;20(9):1123–1145. doi: 10.1517/13543776.2010.505604
  19. Poirier D. Recent advances in the development of 17beta-hydroxysteroid dehydrogenase inhibitors. Steroids. 2025;213:109529. doi: 10.1016/j.steroids.2024.109529
  20. Bydal P, The V-L, Labrie F, Poirier D. Steroidal lactones as inhibitors of 17β- hydroxysteroid dehydrogenase type 5: Chemical synthesis, enzyme inhibitory activity, and assessment of estrogenic and androgenic activities. European Journal of Medicinal Chemistry. 2009;44(2):632–644. doi: 10.1016/j.ejmech.2008.03.020
  21. Farhane S, Fournier M-A, Poirier D. Chemical synthesis, characterisation and biological evaluation of lactonic-estradiol derivatives as inhibitors of 17β-hydroxysteroid dehydrogenase type 1. Journal of Steroid Biochemistry and Molecular Biology. 2013;137:322–331. doi: 10.1016/j.jsbmb.2013.05.002
  22. Djigoue GB, Ngatcha BT, Roy J, Poirier D. Synthesis of 5α-Androstane-17-spiro-δ-lactones with a 3-Keto, 3-Hydroxy, 3-Spirocarbamate or 3-Spiromorpholinone as Inhibitors of 17β-Hydroxysteroid Dehydrogenases. Molecules. 2013;18(1):914–933. doi: 10.3390/molecules18010914
  23. Maltais R, Fournier M-A, Poirier D. Development of 3-substituted-androsterone derivatives as potent inhibitors of 17β-hydroxysteroid dehydrogenase type 3. Bioorganic & Medicinal Chemistry. 2011;19(15):4652–4668. doi: 10.1016/j.bmc.2011.06.003
  24. Kenmogne LC, Roy J, Maltais R, et al. Investigation of the In Vitro and In Vivo efficiency of RM-532-105, a 17β-hydroxysteroid dehydrogenase type 3 inhibitor, in LAPC-4 prostate cancer cell and tumor models. PLOS ONE. 2017;12(2):e0171871. doi: 10.1371/journal.pone.0171871
  25. Cortes-Benitez F, Roy J, Maltais R, Poirier D. Impact of androstane A- and D-ring inversion on 17β-hydroxysteroid dehydrogenase type 3 inhibitory activity, androgenic effect and metabolic stability. Bioorganic & Medicinal Chemistry. 2017;25(7):2065–2073. doi: 10.1016/j.bmc.2017.02.008
  26. Ayan D, Maltais R, Poirier D. Identification of a 17β-Hydroxysteroid Dehydrogenase Type 10 Steroidal Inhibitor: A Tool to Investigate the Role of Type 10 in Alzheimer’s Disease and Prostate Cancer. ChemMedChem. 2012;7(7):1181–1184. doi: 10.1002/cmdc.201200129
  27. Bellavance E, The V-L, Poirier D. Potent and Selective Steroidal Inhibitors of 17β- Hydroxysteroid Dehydrogenase Type 7, an Enzyme That Catalyzes the Reduction of the Key Hormones Estrone and Dihydrotestosterone. Journal of Medicinal Chemistry. 2009;52(23):7488–7502. doi: 10.1021/jm900921c
  28. Djigoue GB, Kenmogne LC, Roy J, Poirier D. Synthesis of 3-spiromorpholinone androsterone derivatives as inhibitors of 17β-hydroxysteroid dehydrogenase type 3. Bioorganic & Medicinal Chemistry Letters. 2013;23(23):6360–6362. doi: 10.1016/j.bmcl.2013.09.072
  29. Djigoue GB, Kenmogne LC, Roy J, Maltais R, Poirier D. Design, chemical synthesis and biological evaluation of 3-spiromorpholinone/3-spirocarbamate androsterone derivatives as inhibitors of 17β-hydroxysteroid dehydrogenase type 3. Bioorganic & Medicinal Chemistry. 2015;23(17):5433–5451. doi: 10.1016/j.bmc.2015.07.049
  30. Laplante Y, Cadot C, Fournier M-A, Poirier D. Estradiol and estrone C-16 derivatives as inhibitors of type 1 17β-hydroxysteroid dehydrogenase: Blocking of ER+ breast cancer cell proliferation induced by estrone. Bioorganic & Medicinal Chemistry. 2008;16(4):1849–1860. doi: 10.1016/j.bmc.2007.11.007
  31. Maltais R, Ayan D, Poirier D. Crucial Role of 3-Bromoethyl in Removing the Estrogenic Activity of 17β-HSD1 Inhibitor 16β-(m-Carbamoylbenzyl)estradiol. ACS Medicinal Chemistry Letters. 2011;2(9):678–681. doi: 10.1021/ml200093v
  32. Maltais R, Trottier A, Barbeau X, et al. Impact of structural modifications at positions 13, 16 and 17 of 16β-(m- carbamoylbenzyl)-estradiol on 17β-hydroxysteroid dehydrogenase type 1 inhibition and estrogenic activity. The Journal of Steroid Biochemistry and Molecular Biology. 2016;161:24–35. doi: 10.1016/j.jsbmb.2015.10.020
  33. Ouellet E, Ayan D, Poirier D. Synthesis and preliminary evaluation of a modified estradiol-core bearing a fused c-lactone as non-estrogenic inhibitor of 17β-hydroxysteroid dehydrogenase type 1. Bioorganic & Medicinal Chemistry Letters. 2011;21(18):5510–5513. doi: 10.1016/j.bmcl.2011.06.110
  34. Njar VC, Brodie AM. Inhibitors of 17α-hydroxylase/17,20-lyase (CYP17): potential agents for the treatment of prostate cancer. Current Pharmaceutical Design. 1999;5(3):163–180.
  35. Hartmann RW, Ehmer PB, Haidar S, et al. Inhibition of CYP 17, a new strategy for the treatment of prostate cancer. Arch Pharm (Weinheim). 2002;335(4):119–128.
  36. Bruno RD, Njar VC. Targeting cytochrome P450 enzymes: a new approach in anti-cancer drug development. Bioorganic & Medicinal Chemistry. 2007;15(15):5047–5060. doi: 10.1016/j.bmc.2007.05.046
  37. Baston E, Leroux FR. Inhibitors of Steroidal Cytochrome P450 Enzymes as Targets for Drug Development. Recent Patents on Anti-Cancer Drug Discovery. 2007;2(1):31–58. doi: 10.2174/157489207779561453
  38. Moreira VM, Salvador JAR, Vasaitis TS, Njar VC. CYP17 Inhibitors for Prostate Cancer Treatment — An Update. Current Medicinal Chemistry. 2008;15(9):868–899. doi: 10.2174/092986708783955428
  39. Owen CP. 17α-Hydroxylase/17,20-Lyase (P450) Inhibitors in the Treatment of Prostate Cancer: A Review. Anti-Cancer Agents in Medicinal Chemistry. 2009;9(6):613–626. doi: 10.2174/187152009788680046
  40. Vasaitis TS, Bruno RD, Njar VC. CYP17 inhibitors for prostate cancer therapy. Journal of Steroid Biochemistry and Molecular Biology. 2011;125(1–2):23–31. doi: 10.1016/j.jsbmb.2010.11.005
  41. Salvador JAR, Moreira VM, Silvestre SM. Steroidal CYP17 Inhibitors for Prostate Cancer Treatment: From Concept to Clinic. In: Hamilton G, editor. Advances in Prostate Cancer. InTech; 2013:275–304. doi: 10.5772/45948
  42. Huo H, Li G, Shi B, Li J. Recent advances on synthesis and biological activities of C-17 aza-heterocycle derived steroids. Bioorganic & Medicinal Chemistry. 2022;69:116882. doi: 10.1016/j.bmc.2022.116882
  43. Stulov SV, Misharin AY. Synthesis of steroids with nitrogen-containing substituents in ring D (Review). Chemistry of Heterocyclic Compounds. 2013;48:1431–1472. doi: 10.1007/s10593-013-1158-8 EDN: RFEOQN
  44. Singh R, Panda G. An overview of synthetic approaches for heterocyclic steroids. Tetrahedron. 2013;69(14):2853–2884. doi: 10.1016/j.tet.2013.02.018
  45. Latysheva AS, Zolottsev VA, Pokrovsky VS, Khan II, Misharin AY. Novel Nitrogen Containing Steroid Derivatives for Prostate Cancer Treatment. Current Medicinal Chemistry. 2021;28(40):8416–8432. doi: 10.2174/0929867328666210208113919 EDN: CZDGOS
  46. Kovacs D, Wolfling J, Szabo N, et al. Efficient access to novel androsteno-17-(1’,3’,4’)-oxadiazoles and 17β-(1’,3’,4’)-thiadiazoles via N-substituted hydrazone and N,N’-disubstituted hydrazine intermediates, and their pharmacological evaluation in vitro. European Journal of Medicinal Chemistry. 2015;98(15):13–29. doi: 10.1016/j.ejmech.2015.05.010
  47. Zhang Y-L, Li Y-F, Wang J-W, et al. Multicomponent assembly of novel antiproliferative steroidal dihydropyridinyl spirooxindoles. Steroids. 2016;109:22–28. doi: 10.1016/j.steroids.2016.03.005
  48. El-Sayed NNE, Abdelaziz MA, Wardakhan WW, Mohareb RM. The Knoevenagel reaction of cyanoacetylhydrazine with pregnenolone: Synthesis of thiophene, thieno[2,3-d]pyrimidine, 1,2,4-triazole, pyran and pyridine derivatives with anti-inflammatory and anti-ulcer activities. Steroids. 2016;107:98–111. doi: 10.1016/j.steroids.2015.12.023
  49. Kostin VA, Zolottsev VA, Kuzikov AV, et al. Oxazolinyl derivatives of [17(20)E]-21-norpregnene differing in the structure of A and B rings. Facile synthesis and inhibition of Cyp17A1 catalytic activity. Steroids. 2016;115:114–122. doi: 10.1016/j.steroids.2016.06.002 EDN: XFJBLP
  50. Silva-Ortiz AV, Bratoeff E, Ramirez-Apan T, et al. Synthesis of new derivatives of 21-imidazolyl-16-dehydropregnenolone as inhibitors of 5α-reductase 2 and with cytotoxic activity in cancer cells. Bioorganic & Medicinal Chemistry. 2017;25(5):1600–1607. doi: 10.1016/j.bmc.2017.01.018
  51. Romero-Hernandez LL, Merino-Montiel P, Meza-Reyes S, et al. Synthesis of unprecedented steroidal spiroheterocycles as potential antiproliferative drugs. European Journal of Medicinal Chemistry. 2017;143:21–32. doi: 10.1016/j.ejmech.2017.10.063
  52. Shi Y-K, Wang B, Shi X-L, et al. Synthesis and biological evaluation of new steroidal pyridines as potential anti-prostate cancer agents. European Journal of Medicinal Chemistry. 2018;145:11–22. doi: 10.1016/j.ejmech.2017.12.094
  53. Kiss A, Herman BE, Gorbe T, et al. Synthesis of novel 17-triazolyl-androst-5-en-3-ol epimers via Cu(I)-catalyzed azide-alkyne cycloaddition and their inhibitory effect on 17α-hydroxylase/C17,20-lyase. Steroids. 2018;135:79–91. doi: 10.1016/j.steroids.2018.03.006
  54. Rassokhina IV, Volkova YA, Kozlov AS, et al. Synthesis and antiproliferative activity evaluation of steroidal imidazo[1,2-α]pyridines. Steroids. 2016;113:29–37. doi: 10.1016/j.steroids.2016.06.001 EDN: WVWPKT
  55. Zolottsev VA, Tkachev YV, Latysheva AS, et al. Comparison of [17(20)E]-21-norpregnene oxazolinyl and benzoxazolyl derivatives as inhibitors of CYP17A1 activity and prostate carcinoma cells growth. Steroids. 2018;129:24–34. doi: 10.1016/j.steroids.2018.06.001 EDN: MKSYUV
  56. Hou Q, He C, Lao K, et al. Design and synthesis of novel steroidal imidazoles as dual inhibitors of AR/CYP17 for the treatment of prostate cancer. Steroids. 2019;150:108384. doi: 10.1016/j.steroids.2019.03.003
  57. Komendantova AS, Scherbakov AM, Komkov AV, et al. Novel steroidal 1,3,4-thiadiazines: synthesis and biological evaluation in androgen receptor-positive prostate cancer 22Rv1 cells. Bioorganic Chemistry. 2019;91:103142. doi: 10.1016/j.bioorg.2019.103142 EDN: ZIDLQD
  58. Song Y-L, Tian C-P, Wu Y, Jiang L-H, Shen L-Q. Design, synthesis and antitumor activity of steroidal pyridine derivatives based on molecular docking. Steroids. 2019;143:53–61. doi: 10.1016/j.steroids.2018.12.007
  59. Dalidovich TS, Hurski AL, Morozevich GE, et al. New azole derivatives of [17(20)E]-21-norpregnene: Synthesis and inhibition of prostate carcinoma cell growth. Steroids. 2019;147:10–18. doi: 10.1016/j.steroids.2018.08.004 EDN: YCDRKP
  60. Jorda R, Lopes SMM, Rezníckova E, et al. Tetrahydropyrazolo[1,5-α]pyridine-fused steroids and their in vitro: biological evaluation in prostate cancer. European Journal of Medicinal Chemistry. 2019;178(15):168–176. doi: 10.1016/j.ejmech.2019.05.064
  61. Jorda R, Reznickova E, Kiełczewska U, et al. Synthesis of novel galeterone derivatives and evaluation of their in vitro activity against prostate cancer cell lines. European Journal of Medicinal Chemistry. 2019;179:483–492. doi: 10.1016/j.ejmech.2019.06.040
  62. Yang Y-T, Du S, Wang S, et al. Synthesis of new steroidal quinolines with antitumor properties. Steroids. 2019;151:108465. doi: 10.1016/j.steroids.2019.108465
  63. Latysheva AS, Zolottsev VA, Veselovsky AV, et al. New steroidal oxazolines, benzoxazoles and benzimidazoles related to abiraterone and galeterone. Steroids. 2020;153:108534. doi: 10.1016/j.steroids.2019.108534 EDN: HZZCQO
  64. Potter GА, Barrie SE, Jarman M, Rowlands MG. Novel Steroidal Inhibitors of Human Cytochrome P45017.alpha.-Hydroxylase-C17,20-lyase): Potential Agents for the Treatment of Prostatic Cancer. Journal of Medicinal Chemistry. 1995;38(13):2463–2471. doi: 10.1021/jm00013a022
  65. Handratta VD, Vasaitis TS, Njar VCO, et al. Novel C-17-Heteroaryl Steroidal CYP17 Inhibitors/Antiandrogens: Synthesis, in Vitro Biological Activity, Pharmacokinetics, and Antitumor Activity in the LAPC4 Human Prostate Cancer Xenograft Model. Journal of Medicinal Chemistry. 2005;48(8):2972–2984. doi: 10.1021/jm040202w
  66. Njar VCО, Brodie AM. Discovery and development of Galeterone (TOK-001 or VN/124-1) for the treatment of all stages of prostate cancer. Journal of Medcinal Chemistry. 2015;58(5):2077–2087. doi: 10.1021/jm501239f
  67. Malikova J, Brixius-Anderko S, Udhane SS, et al. CYP17A1 inhibitor abiraterone, an anti-prostate cancer drug, also inhibits the 21-hydroxylase activity of CYP21A2. Journal of Steroid Biochemistry and Molecular Biology. 2017;174:192–200. doi: 10.1016/j.jsbmb.2017.09.007
  68. Fehl C, Vogt CD, Yadav R, et al. Structure-Based Design of Inhibitors with Improved Selectivity for Steroidogenic Cytochrome P450 17A1 over Cytochrome P450 21A2. Journal of Мedicinal Сhemistry. 2018;61(11):4946−4960. doi: 10.1021/acs.jmedchem.8b00419
  69. Brossard D, Zhang Y, Haider SH, et al. N-substituted Piperazinopyridylsteroid Derivatives as Abiraterone Analogues Inhibit Growth and Induce Pro-apoptosis in Human Hormone-independent Prostate Cancer Cell Lines. Chemical Biology & Drug Design. 2013;82(5):620–629. doi: 10.1111/cbdd.12195
  70. Purushottamachar P, Godbole AM, Gediya LK, et al. Systematic Structure Modifications of Multitarget Prostate Cancer Drug Candidate Galeterone To Produce Novel Androgen Receptor Down-Regulating Agents as an Approach to Treatment of Advanced Prostate Cancer. Journal of Medicinal Chemistry. 2013;56(12):4880–4898. doi: 10.1021/jm400048v
  71. Purushottamachar P, Kwegyir-Afful AK, Martin MS, et al. Identification of Novel Steroidal Androgen Receptor Degrading Agents Inspired by Galeterone 3β-Imidazole Carbamate. ACS Medicinal Chemistry Letters. 2016;7(7):708–713. doi: 10.1021/acsmedchemlett.6b00137
  72. Thomas E, Thankan RS, Purushottamachar P, et al. Novel AR/AR-V7 and Mnk1/2 Degrader, VNPP433-3β: Molecular Mechanisms of Action and Efficacy in AR-Overexpressing Castration Resistant Prostate Cancer In Vitro and In Vivo Models. Cells. 2022;11(17):2699. doi: 10.3390/cells11172699
  73. Kwegyir-Afful AK, Ramalingam S, Purushottamachar P, Ramamurthy VP, Njar VC. Galeterone and VNPT55 induce proteasomal degradation of AR/AR-V7, induce significant apoptosis via cytochrome c release and suppress growth of castration resistant prostate cancer xenografts in vivo. Oncotarget. 2015;6(29):27440–27460. doi: 10.18632/oncotarget.4578
  74. Kwegyir-Afful AK, Bruno RD, Purushottamachar P, Murigi FN, Njar VC. Galeterone and VNPT55 disrupt Mnk-eIF4E to inhibit prostate cancer cell migration and invasion. The FEBS Journal. 2016;283(21):3898–3918. doi: 10.1111/febs.13895
  75. McCarty DJ, Huang W, Kane MA, et al. Novel galeterone analogs act independently of AR and AR-V7 for the activation of the unfolded protein response and induction of apoptosis in the CWR22Rv1 prostate cancer cell model. Oncotarget. 2017;8(51):88501–88516. doi: 10.18632/oncotarget.19762
  76. Kwegyir-Afful AK, Murigi FN, Purushottamachar P, et al. Galeterone and its analogs inhibit Mnk-eIF4E axis, synergize with gemcitabine, impede pancreatic cancer cell migration, invasion and proliferation and inhibit tumor growth in mice. Oncotarget. 2017;8(51):52381–52402. doi: 10.18632/oncotarget.14154
  77. Kwegyir-Afful AK, Ramalingam S, Ramamurthy VP, et al. Galeterone and The Next Generation Galeterone Analogs, VNPP414 and VNPP433-3β Exert Potent Therapeutic Effects in Castration-/Drug-Resistant Prostate Cancer Preclinical Models In Vitro and In Vivo. Cancers. 2019;11(11):1637. doi: 10.3390/cancers11111637
  78. Thomas E, Thankan RS, Purushottamachar P, et al. Transcriptome profiling reveals that VNPP433‐3β, the lead next‐generation galeterone analog inhibits prostate cancer stem cells by downregulating epithelial–mesenchymal transition and stem cell markers. Molecular Carcinogenesis. 2022;61(7):643–654. doi: 10.1002/mc.23406
  79. Thomas E, Thankan RS, Purushottamachar P, Weber DJ, Njar VCO. Targeted Degradation of Androgen Receptor by VNPP433-3β in Castration-Resistant Prostate Cancer Cells Implicates Interaction with E3 Ligase MDM2 Resulting in Ubiquitin-Proteasomal Degradation. Cancers. 2023;15(4):1198. doi: 10.3390/cancers15041198
  80. Thomas E, Thankan RS, Purushottamachar P, et al. Murine toxicology and pharmacokinetics of lead next generation galeterone analog, VNPP433-3β. Steroids. 2023;192:109184. doi: 10.1016/j.steroids.2023.109184
  81. Wang A, Luo X, Wang Y, et al. Design, Synthesis, and Biological Evaluation of Androgen Receptor Degrading and Antagonizing Bifunctional Steroidal Analogs for the Treatment of Advanced Prostate Cancer. Journal of Medicinal Chemistry. 2022;65(18):12460−12481. doi: 10.1021/acs.jmedchem.2c01164
  82. Zolottsev VА, Latysheva АS, Khan II, Pokrovsky VS, Misharin AY. Design and Synthesis of New Agents for Prostate Cancer Treatment Inspired by Steroidal CYP17 A1 Inhibitors. ChemistrySelect. 2022;7(45):e202203393. doi: 10.1002/slct.202203393 EDN: BJANVW
  83. Latysheva AS, Zolottsev VA, Veselovsky AV, et al. Oxazolinyl derivatives of androst-16-ene as inhibitors of CYP17A1 activity and prostate carcinoma cells proliferation: effects of substituents in oxazolinyl moiety. The Journal of Steroid Biochemistry and Molecular Biology. 2023;230:106280. doi: 10.1016/j.jsbmb.2023.106280 EDN: UBRDHJ
  84. Penov Gasi KM, Djurendic Brenesel M, Djurendic E, et al. Synthesis and biological evaluation of some 17-picolyl and 17-picolinylidene androst-5-ene derivatives. Steroids. 2007;72(1):31–40. doi: 10.1016/j.steroids.2006.10.002
  85. Djurendic E, Daljev J, Sakac M, et al. Synthesis of some epoxy and/or N-oxy 17-picolyl and 17-picolinylidene androst-5-ene derivatives and evaluation of their biological activity. Steroids. 2008;73(1):129–138. doi: 10.1016/j.steroids.2007.09.005
  86. Djurendic E, Ajducovic JJ, Sakac M, et al. Synthesis and cytotoxic activity of some 17-picolyl and 17-picolinylidene androstane derivatives. European Journal of Medicinal Chemistry. 2012;54:784–792. doi: 10.1016/j.ejmech.2012.06.030
  87. Ajducovic JJ, Djurendic E, Petri ET, et al. et al. 17(E)-Picolinylidene androstane derivatives as potential inhibitors of prostate cancer cell growth: Antiproliferative activity and molecular docking studies. Bioorganic & Medicinal Chemistry. 2013;21(23):7257–7266. doi: 10.1016/j.bmc.2013.09.063
  88. Szabo N, Ajdukovic JJ, Djurendic EA, et al. Determination of 17α-hydroxylase-C17,20-lyase (P45017α) enzyme activities and their inhibition by selected steroidal picolyl and picolinylidene compounds. Acta Biologica Hungarica. 2015;66(1):41–51. doi: 10.1556/abiol.66.2015.1.4
  89. Jakimov DS, Kojic VV, Aleksic LD, et al. Androstane derivatives induce apoptotic death in MDA-MB-231 breast cancer cells. Bioorganic & Medicinal Chemistry. 2015;23(22):7189–7198. doi: 10.1016/j.bmc.2015.10.015
  90. Stulov SV, Tkachev YV, Novikov RA, et al. Synthesis of 21-nitrogen substituted pregna-5,17(20)-dienes from pregnenolone. Steroids. 2012;77(1–2):77–84. doi: 10.1016/j.steroids.2011.10.007 EDN: PDGLYZ
  91. Stulov SV, Mankevich OV, Novikov RA, et al. Synthesis and molecular modeling of (4′R)- and (4′S)- 4′-substituted 2′-{[(E)-androst-5-en-17-ylidene]-methyl}oxazolines. Steroids. 2013;78(5):521–527. doi: 10.1016/j.steroids.2013.02.014 EDN: RFCFZP
  92. Khan II, Karshieva SS, Sokolova DV, et al. Antiproliferative, proapoptotic, and tumor-suppressing effects of the novel anticancer agent alsevirone in prostate cancer cells and xenografts. Archiv der Pharmazie. 2021;355:e2100316. doi: 10.1002/ardp.202100316

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).