Cancer therapies targeting the STING pathway
- Authors: Karimova A.O.1,2, Sadovskaya Y.O.1, Solopova O.N.1,2
-
Affiliations:
- Blokhin National Medical Research Center of Oncology
- National Research University Higher School of Economics
- Issue: Vol 30, No 3 (2025)
- Pages: 156-169
- Section: Reviews
- URL: https://ogarev-online.ru/1028-9984/article/view/365998
- DOI: https://doi.org/10.17816/onco689194
- EDN: https://elibrary.ru/PAARQY
- ID: 365998
Cite item
Abstract
Modern oncology needs to develop and implement antineoplastic agents that provide sustained remission without serious side effects. Immunotherapy and targeted therapy agents that activate innate immunity may address this issue. The stimulator of interferon genes (STING), an intracellular protein, mediates the synthesis of type I interferons, which have antiviral, antitumor, and antiproliferative properties. The multifaceted effects of interferons may be beneficial in cancer therapy. However, potential side effects of systemic interferon therapy underlie the need for the methods of stimulating them locally in the tumor nodule by targeting the STING pathway. STING is directly activated by the cyclic dinucleotide cGAMP. It is synthesized by the cyclic GMP-AMP synthase (cGAS) from adenosine triphosphate and guanosine triphosphate. However, cGAMP cannot be used as a therapeutic agent because it is unstable and only persists in the cell for a short period of time before being hydrolyzed. Therefore, researchers all over the world are working to synthesize new activators of the STING pathway. In cancer therapy, using STING activators as part of an immunoconjugate for targeted delivery to the tumor nodule is considered more effective. A monoclonal antibody against a tumor-specific antigen is the second component of the immunoconjugate. Given the high risk of tumor cell resistance to cytostatic drugs commonly used in current clinical practice, an immunoconjugate with a STING activator may provide advantages over existing therapies. Several immunoconjugates have already been tested in preclinical studies and are considered promising for drug development. However, further research is needed to study the properties of new compounds and improve their efficacy and tolerability. The search was performed in PubMed, eLIBRARY.RU, Google Scholar, NCBI ClinicalTrials, and PubChem and included publications from June to August 2025. The following search terms were used: STING protein, cGAS protein, cGAS-STING pathway, IFN-β, interferon-based treatment, type I IFN induction, antibody-drug conjugate, STING activation, STING agonist, and HER2-targeted therapies.
Keywords
About the authors
Anastasia O. Karimova
Blokhin National Medical Research Center of Oncology; National Research University Higher School of Economics
Author for correspondence.
Email: a.karimova@ronc.ru
ORCID iD: 0009-0000-0317-9948
SPIN-code: 8054-2753
Russian Federation, Moscow; Moscow
Yana O. Sadovskaya
Blokhin National Medical Research Center of Oncology
Email: ja.sadovskaja@ronc.ru
ORCID iD: 0009-0009-7115-7797
SPIN-code: 8572-7717
Russian Federation, Moscow
Olga N. Solopova
Blokhin National Medical Research Center of Oncology; National Research University Higher School of Economics
Email: o.solopova@ronc.ru
ORCID iD: 0000-0002-5465-6094
SPIN-code: 2807-7709
Cand. Sci. (Biology)
Russian Federation, Moscow; МоскваReferences
- Kumar A, Taghi Khani A, Sanchez Ortiz A, Swaminathan S. GM-CSF: A Double-Edged Sword in Cancer Immunotherapy. Front Immunol. 2022;13:901277. doi: 10.3389/fimmu.2022.901277 EDN: OAMZCE
- Mantovani A, Allavena P. The interaction of anticancer therapies with tumor-associated macrophages. Journal of Experimental Medicine. 2015;212(4):435–445. doi: 10.1084/jem.20150295 EDN: USWDFL
- Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008;455(7213):674–678. doi: 10.1038/nature07317
- Evers TMJ, Sheikhhassani V, Haks MC, et al. Single-cell analysis reveals chemokine-mediated differential regulation of monocyte mechanics. Iscience. 2022;25(1). doi: 10.1016/j.isci.2021.103555 EDN: OSDJQW
- Jin L, Waterman PM, Jonscher KR, et al. MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Molecular and Cellular Biology. 2008. doi: 10.1128/MCB.00640-08
- Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339(6121):786–791. doi: 10.1126/science.1232458
- Schmitz CRR, Maurmann RM, Guma FTCR, Bauer ME, Barbe-Tuana FM. cGAS-STING pathway as a potential trigger of immunosenescence and inflammaging. Frontiers in Immunology. 2023;14:1132653. doi: 10.3389/fimmu.2023.1132653 EDN: LNVGWH
- Li T, Chen ZJ. The cGAS–cGAMP–STING pathway connects DNA damage to inflammation, senescence, and cancer. Journal of Experimental Medicine. 2018;215(5):1287–1299. doi: 10.1084/jem.20180139 EDN: YIDEPJ
- Burdette DL, Vance RE. STING and the innate immune response to nucleic acids in the cytosol. Nature Immunology. 2013;14(1):19–26. doi: 10.1038/ni.2491
- Margolis SR, Wilson SC, Vance RE. Evolutionary origins of cGAS-STING signaling. Trends in Immunology. 2017;38(10):733–743. doi: 10.1016/j.it.2017.03.004
- Xia T, Konno H, Ahn J, Barber GN. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Reports. 2016;14(2):282–297. doi: 10.1016/j.celrep.2015.12.029
- Xia T, Konno H, Barber GN. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Research. 2016;76(22):6747–6759. doi: 10.1158/0008-5472.CAN-16-1404
- Laustsen A, Van der Sluis RM, Gris-Oliver A, et al. Ascorbic acid supports ex vivo generation of plasmacytoid dendritic cells from circulating hematopoietic stem cells. Elife. 2021;10:e65528. doi: 10.7554/eLife.65528 EDN: JBUDLC
- Vidal P. Interferon α in cancer immunoediting: From elimination to escape. Scandinavian Journal of Immunology. 2020;91(5):e12863. doi: 10.1111/sji.12863 EDN: JQFTMF
- Borden EC, Sen GC, Uze G, et al. Interferons at age 50: past, current and future impact on biomedicine. Nature Reviews Drug Discovery. 2007;6(12):975–990. doi: 10.1038/nrd2422
- Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunological Reviews. 2004;202(1):8–32. doi: 10.1111/j.0105-2896.2004.00204.x EDN: YIQJHL
- Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, et al. Direct effects of type I interferons on cells of the immune system. Clinical Cancer Research. 2011;17(9):2619–2627. doi: 10.1158/1078-0432.CCR-10-1114
- Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons to cytokines. Journal of Biological Chemistry. 2007;282(28):20059–20063. doi: 10.1074/jbc.R700016200
- Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 2002;285(1–2):1–24. doi: 10.1016/s0378-1119(02)00398-0 EDN: AUCQHJ
- Der SD, Zhou A, Williams BRG, Silverman RH. Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays. Proceedings of the National Academy of Sciences. 1998;95(26):15623–15628. doi: 10.1073/pnas.95.26.15623
- Subedi P, Huber K, Sterr C, et al. Towards unravelling biological mechanisms behind radiation-induced oral mucositis via mass spectrometry-based proteomics. Frontiers in Oncology. 2023;13:1180642. doi: 10.3389/fonc.2023.1180642 EDN: LUNAIF
- Zhou X, Michal JJ, Zhang L, et al. Interferon induced IFIT family genes in host antiviral defense. International Journal of Biological Sciences. 2013;9(2):200. doi: 10.7150/ijbs.5613
- Davidsen KT, Haaland GS, Lie MK, Lorens JB, Engelsen AST. The role of Axl receptor tyrosine kinase in tumor cell plasticity and therapy resistance. Biomarkers of the Tumor Microenvironment: Basic Studies and Practical Applications. 2017;351–376. doi: 10.1007/978-3-319-39147-2_15 EDN: YITUYC
- Liau NPD, Laktyushin, A, Lucet IS, et al. The molecular basis of JAK/STAT inhibition by SOCS1. Nature Communications. 2018;9(1):1558. doi: 10.1038/s41467-018-04013-1 EDN: GVLXXB
- Yoshimura A, Naka T, Kubo M. SOCS proteins, cytokine signalling and immune regulation. Nature Reviews Immunology. 2007;7(6):454–465. doi: 10.1038/nri2093
- Holzgruber J, Martins C, Kulcsar Z, et al. Type I interferon signaling induces melanoma cell-intrinsic PD-1 and its inhibition antagonizes immune checkpoint blockade. Nat Commun. 2024;15(1):7165. doi: 10.1038/s41467-024-51496-2 EDN: VOACKB
- Kurts C, Robinson BWS, Knolle PA. Cross-priming in health and disease. Nature Reviews Immunology. 2010;10(6):403–414. doi: 10.1038/nri2780 EDN: MZYCQZ
- Le Bon A, Etchart N, Rossmann C, et al. Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nature Immunology. 2003;4(10):1009–1015. doi: 10.1038/ni978
- Sánchez-Paulete AR, Teijeira A, Cueto FJ, et al. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Annals of Oncology. 2017;28:xii44–xii55. doi: 10.1093/annonc/mdx727
- Parker B, Rautela J, Hertzog,P. Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer. 2016;16:131–144. doi: 10.1038/nrc.2016.14
- Belardelli F, Ferrantini M, Proietti E, Kirkwood JM. Interferon-alpha in tumor immunity and immunotherapy. Cytokine & Growth Factor Reviews. 2002;13(2):119–134. doi: 10.1016/s1359-6101(01)00022-3
- Saven A, Piro LD. Treatment of hairy cell leukemia. Blood. 1992;79(5):1111–1120.
- Kirkwood JM, Strawderman MH, Ernstoff MS, et al. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. Journal of Clinical Oncology. 1996;14(1):7–17. doi: 10.1200/JCO.1996.14.1.7
- Antonelli G, Scagnolari C, Moschella F, Proietti E. Twenty-five years of type I interferon-based treatment: a critical analysis of its therapeutic use. Cytokine & Growth Factor Reviews. 2015;26(2):121–131. doi: 10.1016/j.cytogfr.2014.12.006
- Mocellin S, Pasquali S, Rossi CR, Nitti D. Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. Journal of the National Cancer Institute. 2010;102(7):493–501. doi: 10.1093/jnci/djq009
- Heil M, Clauss M, Suzuki K, et al. Vascular endothelial growth factor (VEGF) stimulates monocyte migration through endothelial monolayers via increased integrin expression. European Journal of Cell Biology. 2000;79(11):850–857. doi: 10.1078/0171-9335-00113
- Lee P, Goishi K, Davidson AJ, et al. Neuropilin-1 is required for vascular development and is a mediator of VEGF-dependent angiogenesis in zebrafish. Proceedings of the National Academy of Sciences. 2002;99(16):10470–10475. doi: 10.1073/pnas.162366299
- Nikolai-Yogerst A, White P, Iwashima M. IFN-β reduces NRP-1 expression on human cord blood monocytes and inhibits VEGF-induced chemotaxis. Cytokine. 2021;143:155519. doi: 10.1016/j.cyto.2021.155519 EDN: OKQZYH
- Zhang X, Shi H, Wu J, et al. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Molecular Cell. 2013;51(2):226–235. doi: 10.1016/j.molcel.2013.05.022
- Hsiao K, Murray NH, Mikheil D, et al. Homogeneous and bioluminescent biochemical and cellular assay for monitoring cGAMP and enzymes that generate and degrade cGAMP. Scientific Reports. 2024;14(1):31165. doi: 10.1038/s41598-024-82525-1 EDN: XCOTKN
- Wang S, Böhnert V, Joseph AJ, et al. ENPP1 is an innate immune checkpoint of the anticancer cGAMP–STING pathway in breast cancer. Proceedings of the National Academy of Sciences. 2023;120(52):e2313693120. doi: 10.1073/pnas.2313693120 EDN: IGFSBJ
- Yoon PO, Kim J, Lee A-R, et al. A novel small molecule inhibitor of ENPP1 promotes T and NK cell activation and enhances anti-tumor efficacy in combination with immune checkpoint blockade therapy. Cancer Research. 2023;83(7_Suppl):702. doi: 10.1158/1538-7445.AM2023-702 EDN: ORCMLB
- Pu C, Cui H, Yu H, et al. Oral ENPP1 inhibitor designed using generative AI as next generation STING modulator for solid tumors. Nature Communications. 2025;16(1):4793. doi: 10.1038/s41467-025-59874-0
- Flowers S, Petronella BA, McQueney MS, et al. A novel TREX1 inhibitor, VB-85680, upregulates cellular interferon responses. Plos One. 2024;19(8):e0305962. doi: 10.1371/journal.pone.0305962 EDN: KVWDUH
- Flowers S, Petronella BA, McQueney MS, et al. A novel TREX1 inhibitor, VB-85680, upregulates cellular interferon responses. Plos One. 2024;19(8):e0305962. doi: 10.1371/journal.pone.0305962 EDN: KVWDUH
- Altman MD, Andresen B, Chang W, et al. Cyclic di-nucleotide compounds as STING agonists. United States patent US-10759825-B2. 2020 Jan 09.
- Shaw BR, Sergueev D, He K, et al. Boranophosphate backbone: a mimic of phosphodiesters, phosphorothioates, and methyl phosphonates. Methods in enzymology. 2000;313:226–257. doi: 10.1016/s0076-6879(00)13015-0
- Shi H, Wu J, Chen ZJ, Chen C. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING. Proceedings of the National Academy of Sciences. 2015;112(29):8947–8952. doi: 10.1073/pnas.1507317112
- Zhang H, You Q-D, Xu X-L. Targeting stimulator of interferon genes (STING): a medicinal chemistry perspective. Journal of Medicinal Chemistry. 2019;63(8):3785–3816. doi: 10.1021/acs.jmedchem.9b01039 EDN: DRPDFZ
- Meric-Bernstam F, Sweis RF, Hodi FS, et al. Phase I dose-escalation trial of MIW815 (ADU-S100), an intratumoral STING agonist, in patients with advanced/metastatic solid tumors or lymphomas. Clinical Cancer Research. 2022;28(4):677–688. doi: 10.1158/1078-0432.CCR-21-1963 EDN: OMZKNT
- Harrington KJ, Champiat S, Brody JD, et al. Phase 1 and 2 Clinical Studies of the STING Agonist Ulevostinag With and Without Pembrolizumab in Participants With Advanced or Metastatic Solid Tumors or Lymphomas. Clinical Cancer Research. 2025;31(16):3400–3411. doi: 10.1158/1078-0432.CCR-24-3630
- Lian S, Xie R, Ye Y, et al. Simultaneous blocking of CD47 and PD-L1 increases innate and adaptive cancer immune responses and cytokine release. EBioMedicine. 2019;42:281–295. doi: 10.1016/j.ebiom.2019.03.018 EDN: BDYDLH
- Chang J, Hou S, Yan X, Li W, Xiao J. Discovery of novel STING inhibitors based on the structure of the mouse STING agonist DMXAA. Molecules. 2023;28(7):2906. doi: 10.3390/molecules28072906 EDN: EMLILF
- Conlon J, Burdette DL, Sharma S, et al. Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5, 6-dimethylxanthenone-4-acetic acid. The Journal of Immunology. 2013;190(10):5216–5225. doi: 10.4049/jimmunol.1300097
- Ramanjulu JM, Pesiridis GS, Yang J, et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature. 2018;564(7736):439–443. EDN: WMCKON
- Wang L, Liang Z, Guo Y, et al. STING agonist diABZI enhances the cytotoxicity of T cell towards cancer cells. Cell Death & Disease. 2024;15(4):265. doi: 10.1038/s41586-018-0705-y EDN: LDMQAR
- Huang B, Lang X, Li X. The role of IL-6/JAK2/STAT3 signaling pathway in cancers. Frontiers in Oncology. 2022;12:1023177. doi: 10.3389/fonc.2022.1023177
- Pan B-S, Perera SA, Piesvaux JA, et al. An orally available non-nucleotide STING agonist with antitumor activity. Science. 2020;369(6506):eaba6098. doi: 10.1126/science.aba6098 EDN: GBYZWZ
- Patent RUS N 2811736/ 16.01.2024. Solopova ON, Gusev DV, Kosorukov VS, et al. A new chemical compound that stimulates the production of human interferon-beta by activating the STING signaling pathway, and a method for its production. Available from: https://patents.google.com/patent/RU2811736C1/ru (In Russ.) EDN: BBAVTF
- Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduction and Targeted Therapy. 2022;7(1):93. doi: 10.1038/s41392-022-00947-7 EDN: QWXVLU
- Alley SC, Okeley NM, Senter PD. Antibody–drug conjugates: targeted drug delivery for cancer. Current Opinion in Chemical Biology. 2010;14(4):529–537. doi: 10.1016/j.cbpa.2010.06.170
- Weiskopf K, Weissman IL. Macrophages are critical effectors of antibody therapies for cancer. Mabs. 2015;7(2):303–310. doi: 10.1080/19420862.2015.1011450
- Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv Pharm Bull. 2017;7(3):339–348. doi: 10.15171/apb.2017.041
- Duvall JR, Thomas JD, Bukhalid RA, et al. Discovery and optimization of a STING agonist platform for application in antibody drug conjugates. Journal of Medicinal Chemistry. 2023;66(15):10715–10733. doi: 10.1021/acs.jmedchem.3c00907 EDN: VKQKPQ
- Vasiyani H, Wadhwa B. STING activation and overcoming the challenges associated with STING agonists using ADC (antibody-drug conjugate) and other delivery systems. Cellular Signalling. 2025;111647. doi: 10.1016/j.cellsig.2025.111647 EDN: AMQCGA
- Wu Y, Fang Y, Wei Q, et al. Tumor-targeted delivery of a STING agonist improves cancer immunotherapy. Proceedings of the National Academy of Sciences. 2022;119(49):e2214278119. doi: 10.1073/pnas.2214278119 EDN: PDPHPZ
- Zhang Y-L, Yuan J-Q, Wang K-F, et al. The prevalence of EGFR mutation in patients with non-small cell lung cancer: a systematic review and meta-analysis. Oncotarget. 2016;7(48):78985. doi: 10.18632/oncotarget.12587 EDN: WKJAKV
- Zhen Y, Guanghui L, Xiefu Z. Knockdown of EGFR inhibits growth and invasion of gastric cancer cells. Cancer Gene Therapy. 2014;21(11):491–497. doi: 10.1038/cgt.2014.55
- Arena S, Bellosillo B, Siravegna G, et al. Emergence of multiple EGFR extracellular mutations during cetuximab treatment in colorectal cancer. Clinical Cancer Research. 2015;21(9):2157–2166. doi: 10.1158/1078-0432.CCR-14-2821 EDN: VFEZHH
- Thomas R, Weihua Z. Rethink of EGFR in cancer with its kinase independent function on board. Frontiers in Oncology. 2019;9:800. doi: 10.3389/fonc.2019.00800 EDN: LRFXGC
- Luke JJ, Pinato DJ, Juric D, et al. Phase I dose-escalation and pharmacodynamic study of STING agonist E7766 in advanced solid tumors. Journal for immunotherapy of cancer. 2025;13(2):e010511. doi: 10.1136/jitc-2024-010511
- Drozdowski B, Arai K, Kim D-S, et al. 1017 PSMA-E7766 ADC: harnessing targeted delivery of STING agonists for anti-tumor activity in prostate cancer. BMJ Specialist Journals. 2024.
- Oh D-Y, Bang Y-J. HER2-targeted therapies — a role beyond breast cancer. Nature Reviews Clinical Oncology. 2020;17(1):33–48. doi: 10.1038/s41571-019-0268-3 EDN: TYUEUZ
- Santin AD, Bellone S, Roman JJ, McKenney JK, Pecorelli S. Trastuzumab treatment in patients with advanced or recurrent endometrial carcinoma overexpressing HER2/neu. International Journal of Gynecology & Obstetrics. 2008;102(2):128–131. doi: 10.1016/j.ijgo.2008.04.008 EDN: XWDBUW
- Mazières J, Peters S, Lepage B, et al. Lung cancer that harbors an HER2 mutation: epidemiologic characteristics and therapeutic perspectives. Journal of Clinical Oncology. 2013;31(16):1997–2003. doi: 10.1200/JCO.2012.45.6095
- Siena S, Sartore-Bianchi A, Marsoni S, et al. Targeting the human epidermal growth factor receptor 2 (HER2) oncogene in colorectal cancer. Annals of Oncology. 2018;29(5):1108–1119. doi: 10.1093/annonc/mdy100 EDN: VFVLUG
- Von Minckwitz G, Procter M, De Azambuja E, et al. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. New England Journal of Medicine. 2017;377(2):122–131. doi: 10.1056/NEJMoa1703643 EDN: XNQFLE
- Bukhalid RA, Duvall JR, Lancaster K, et al. XMT-2056, a HER2-Directed STING Agonist Antibody–Drug Conjugate, Induces Innate Antitumor Immune Responses by Acting on Cancer Cells and Tumor-Resident Immune Cells. Clinical Cancer Research. 2025;31(9):1766–1782. doi: 10.1158/1078-0432.CCR-24-2449
Supplementary files


