The claudin family of proteins in the pathogenesis and treatment of malignancies: current insights and future prospects
- Authors: Boichuk S.V.1,2,3, Bikinieva F.F.1, Kopnin P.B.4
-
Affiliations:
- Department of Pathology, Kazan State Medical University
- Institute of Fundamental Medicine and Biology, Kazan Federal University
- Russian Medical Academy of Continuous Professional Education
- Blokhin National Medical Research Centre of Oncology
- Issue: Vol 29, No 3 (2024)
- Pages: 258-277
- Section: Reviews
- URL: https://ogarev-online.ru/1028-9984/article/view/313531
- DOI: https://doi.org/10.17816/onco636917
- ID: 313531
Cite item
Abstract
This review presents data concerning claudins, the proteins of tight junctions, and their role in the pathogenesis and therapy of malignancies. Particular attention is paid to the variability in claudin expression levels, their intracellular localization in tumors, and the prognostic significance of these variations in cancer. The review highlights the role of claudins in metastatic spread, invasion, and tumor cell resistance to antitumor drug therapy. Moreover, the potential of claudins as targets for novel diagnostic and treatment methods for malignant neoplasms is also discussed.
Full Text
##article.viewOnOriginalSite##About the authors
Sergei V. Boichuk
Department of Pathology, Kazan State Medical University; Institute of Fundamental Medicine and Biology, Kazan Federal University; Russian Medical Academy of Continuous Professional Education
Author for correspondence.
Email: boichuksergei@mail.ru
ORCID iD: 0000-0003-2415-1084
SPIN-code: 8058-6246
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Kazan; Kazan; MoscowFiryuza F. Bikinieva
Department of Pathology, Kazan State Medical University
Email: firuza1995@mail.ru
ORCID iD: 0000-0002-9012-6525
SPIN-code: 9014-1478
MD, Cand Sci. (Medicine)
Russian Federation, KazanPavel B. Kopnin
Blokhin National Medical Research Centre of Oncology
Email: pbkopnin@mail.ru
ORCID iD: 0000-0002-2078-4274
SPIN-code: 2339-5729
Cand Sci. (Biology)
Russian Federation, MoscowReferences
- Mineta K, Yamamoto Y, Yamazaki Y, et al. Predicted expansion of the claudin multigene family. FEBS Lett. 2011;585(4):606–612. doi: 10.1016/j.febslet.2011.01.028
- Blackman B, Russell T, Nordeen SK, et al. Claudin 7 expression and localization in the normal murine mammary gland and murine mammary tumors. Breast Cancer Res. 2005;7:1–8. doi: 10.1186/bcr988
- Van Itallie CM, Anderson JM. Claudin interactions in and out of the tight junction. Tissue barriers. 2013;1(3):e25247. doi: 10.4161/tisb.25247
- Li J. Context-dependent roles of claudins in tumorigenesis. Front Oncol. 2021;11:676781. doi: 10.3389/fonc.2021.676781
- Wang DW, Zhang WH, Galiullin D, et al. The role and mechanism of claudins in cancer. Front Oncol. 2022;12:1051497. doi: 10.3389/fonc.2022.1051497
- Pacheco A, Carretero L, Torres C, et al. NISCH syndrome: An extremely rare cause of neonatal cholestasis. J Hepatol. 2020;73(5):1257–1258. doi: 10.1016/j.jhep.2020.07.006
- Sakai N, Chiba H, Fujita H, et al. Expression patterns of claudin family of tight-junction proteins in the mouse prostate. Histochem Cell Biol. 2007;127:457–462. doi: 10.1007/s00418-007-0269-7
- Sladojevic N, Stamatovic SM, Johnson AM, et al. Claudin-1-dependent destabilization of the blood–brain barrier in chronic stroke. J Neurosci. 2019;39(4):743–757. doi: 10.1523/JNEUROSCI.1432-18.2018
- Bergmann S, von Buenau B, Vidal-Y-Sy S, et al. Claudin-1 decrease impacts epidermal barrier function in atopic dermatitis lesions dose-dependently. Sci Rep. 2020;10(1):2024. doi: 10.1038/s41598-020-58718-9
- Iida M, Ohtomo S, Wada NA, et al. TNF-α induces Claudin-1 expression in renal tubules in Alport mice. PLoS One. 2022;17(3):e0265081. doi: 10.1371/journal.pone.0265081
- Singh AB, Sharma A, Smith JJ, et al. Claudin-1 up-regulates the repressor ZEB-1 to inhibit E-cadherin expression in colon cancer cells. Gastroenterology. 2011;141(6):2140–2153. doi: 10.1053/j.gastro.2011.08.038
- Dhawan P, Singh AB, Deane NG, et al. Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest. 2005;115(7):1765–1776. doi: 10.1172/JCI24543
- Yamamoto D, Kayamori K, Sakamoto K, et al. Intracellular claudin-1 at the invasive front of tongue squamous cell carcinoma is associated with lymph node metastasis. Cancer Sci. 2020;111(2):700–712. doi: 10.1111/cas.14249
- Elsayed AM, Mahmoud EI, Salem MM, Khairy RA. Immunohistochemical Expression of Claudin-1 and Claudin-4 in Urothelial Carcinoma of the Urinary Bladder. Asian Pac J Cancer Prev. 2024;25(2):637–646. doi: 10.31557/APJCP.2024.25.2.637
- Ouban A, Ameer OZ, Quek KJ, et al. Detection of Increased Expression of Claudin-1 in Triple-Negative Breast Cancer: Analysis and Clinical-Pathological Correlation. Cureus. 2023;15(3):e36648. doi: 10.7759/cureus.36648
- Zhou B, Moodie A, Blanchard A, et al. Claudin 1 in breast cancer: new insights. J Clin Med. 2015;4(12):1960–1976. doi: 10.3390/jcm4121952
- Miskad UA, Aswidah A, Dahlan H, et al. The Role of Claudin-1 Expression in Follicular and Papillary Thyroid Neoplasm. Asian Pac J Cancer Prev. 2022;23(12):4023–4027. doi: 10.31557/APJCP.2022.23.12.4023
- Leotlela PD, Wade MS, Duray PH, et al. Claudin-1 overexpression in melanoma is regulated by PKC and contributes to melanoma cell motility. Oncogene. 2007;26(26):3846–3856. doi: 10.1038/sj.onc.1210155
- English DP, Santin AD. Claudins overexpression in ovarian cancer: potential targets for Clostridium Perfringens Enterotoxin (CPE) based diagnosis and therapy. Int J Mol Sci. 2013;14(5):10412–10437. doi: 10.3390/ijms140510412
- Tsukahara M, Nagai H, Kamiakito T, et al. Distinct expression patterns of claudin-1 and claudin-4 in intraductal papillary-mucinous tumors of the pancreas. Pathol Int. 2005;55(2):63–69. doi: 10.1111/j.1440-1827.2005.01793.x
- Väre P, Loikkanen I, Hirvikoski P, et al. Low claudin expression is associated with high Gleason grade in prostate adenocarcinoma. Oncol Rep. 2008;19(1):25–31.
- Higashi Y, Suzuki S, Sakaguchi T, et al. Loss of claudin-1 expression correlates with malignancy of hepatocellular carcinoma. J Surg Res. 2007;139(1):68–76. doi: 10.1016/j.jss.2006.08.038
- Paschoud S, Bongiovanni M, Pache JC, Citi S. Claudin-1 and claudin-5 expression patterns differentiate lung squamous cell carcinomas from adenocarcinomas. Mod Pathol. 2007;20(9):947–954. doi: 10.1038/modpathol.3800835
- Stebbing J, Filipovic A, Giamas G. Claudin-1 as a promoter of EMT in hepatocellular carcinoma. Oncogene. 2013;32(41):4871–4872. doi: 10.1038/onc.2012.591
- Suh Y, Yoon CH, Kim RK, et al. Claudin-1 induces epithelial–mesenchymal transition through activation of the c-Abl-ERK signaling pathway in human liver cells. Oncogene. 2013;32(41):4873–4882. doi: 10.1038/onc.2012.505
- Fortier AM, Asselin E, Cadrin M. Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensitivity through claudin1 up-regulation. J Biol Chem. 2013;288(16):11555–11571. doi: 10.1074/jbc.M112.428920
- Giampieri S, Manning C, Hooper S, et al. Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol. 2009;11(11):1287–1296. doi: 10.1038/ncb1973
- Aimes RT, Quigley JP. Matrix metalloproteinase-2 is an interstitial collagenase: inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type i collagen generating the specific ¾-and ¼-length fragments (*). J Biol Chem. 1995;270(11):5872–5876. doi: 10.1074/jbc.270.11.5872
- Oku N, Sasabe E, Ueta E, et al. Tight junction protein claudin-1 enhances the invasive activity of oral squamous cell carcinoma cells by promoting cleavage of laminin-5 γ2 chain via matrix metalloproteinase (MMP)-2 and membrane-type MMP-1. Cancer Res. 2006;66(10):5251–5257. doi: 10.1158/0008-5472.CAN-05-4478
- Miyamori H, Takino T, Kobayashi Y, et al. Claudin promotes activation of pro-matrix metalloproteinase-2 mediated by membrane-type matrix metalloproteinases. J Biol Chem. 2001;276(30):28204–28211. doi: 10.1074/jbc.M103083200
- Pope JL, Ahmad R, Bhat A, et al. Claudin-1 overexpression in intestinal epithelial cells enhances susceptibility to adenamatous polyposis coli-mediated colon tumorigenesis. Mol Cancer. 2014;13:1–13. doi: 10.1186/1476-4598-13-167
- Venugopal S, Anwer S, Szaszi K. Claudin-2: Roles beyond Permeability Functions. Int J Mol Sci. 2019;20(22). doi: 10.3390/ijms20225655
- Barrett KE. Claudin-2 pore causes leak that breaches the dam in intestinal inflammation. J Clin Invest. 2020;130(10):5100–5101. doi: 10.1172/JCI140528
- Oami T, Abtahi S, Shimazui T, et al. Claudin-2 upregulation enhances intestinal permeability, immune activation, dysbiosis, and mortality in sepsis. Proc Natl Acad Sci U S A. 2024;121(10):e2217877121. doi: 10.1073/pnas.2217877121
- Beggs MR, Young K, Pan W, et al. Claudin-2 and claudin-12 form independent, complementary pores required to maintain calcium homeostasis. Proc Natl Acad Sci. 2021;118(48):e2111247118. doi: 10.1073/pnas.2111247118
- Curry J, Saurette M, Askari M, et al. Claudin-2 deficiency associates with hypercalciuria in mice and human kidney stone disease. J Clin Invest. 2020;130(4):1948–1960. doi: 10.1172/JCI127750
- Tabaries S, Annis M, Lazaris A, et al. Claudin-2 promotes colorectal cancer liver metastasis and is a biomarker of the replacement type growth pattern. Commun Biol. 2021;4(1):657. doi: 10.1038/s42003-021-02189-9
- Aung P, Mitani Y, Sanada Y, et al. Differential expression of claudin-2 in normal human tissues and gastrointestinal carcinomas. Virchows Arch. 2006;448:428–434. doi: 10.1007/s00428-005-0120-2
- Dhawan P, Ahmad R, Chaturvedi R, et al. Claudin-2 expression increases tumorigenicity of colon cancer cells: role of epidermal growth factor receptor activation. Oncogene. 2011;30(29):3234–3247. doi: 10.1038/onc.2011.43
- Kinugasa T, Huo Q, Higashi D, et al. Selective up-regulation of claudin-1 and claudin-2 in colorectal cancer. Anticancer Res. 2007;27(6A):3729–3734.
- Jung H, Jun K, Jung J, et al. The expression of claudin-1, claudin-2, claudin-3, and claudin-4 in gastric cancer tissue. J Surg Res. 2011;167(2):e185-e191. doi: 10.1016/j.jss.2010.02.010
- Soini Y. Claudins 2, 3, 4, and 5 in Paget’s disease and breast carcinoma. Hum Pathol. 2004;35(12):1531–1536.
- Szasz A, Tokes A, Micsinai M, et al. Prognostic significance of claudin expression changes in breast cancer with regional lymph node metastasis. Clin Exp Metastasis. 2011;28:55–63. doi: 10.1007/s10585-010-9357-5
- Kim T, Huh J, Lee S, et al. Down-regulation of claudin-2 in breast carcinomas is associated with advanced disease. Histopathology. 2008;53(1):48–55. doi: 10.1111/j.1365-2559.2008.03052.x
- Kimbung S, Kovacs A, Bendahl PO, et al. Claudin-2 is an independent negative prognostic factor in breast cancer and specifically predicts early liver recurrences. Mol Oncol. 2014;8(1):119–128. doi: 10.1016/j.molonc.2013.10.002
- Tabaries S, Dong Z, Annis M, et al. Claudin-2 is selectively enriched in and promotes the formation of breast cancer liver metastases through engagement of integrin complexes. Oncogene. 2011;30(11):1318–1328. doi: 10.1038/onc.2010.518
- Buchert M, Papin M, Bonnans C, et al. Symplekin promotes tumorigenicity by up-regulating claudin-2 expression. Proc Natl Acad Sci. 2010;107(6):2628–2633. doi: 10.1073/pnas.0903747107
- Kaarteenaho-Wiik R, Soini Y. Claudin-1,− 2,− 3,− 4,− 5, and− 7 in usual interstitial pneumonia and sarcoidosis. J Histochem Cytochem. 2009;57(3):187–195. doi: 10.1369/jhc.2008.951566
- Hewitt K, Agarwal R, Morin P. The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer. 2006;6:1–8. doi: 10.1186/1471-2407-6-186
- Kyuno D, Yamaguchi H, Ito T, et al. Targeting tight junctions during epithelial to mesenchymal transition in human pancreatic cancer. World J Gastroenterol WJG. 2014;20(31):10813. doi: 10.3748/wjg.v20.i31.10813
- Milatz S, Krug SM, Rosenthal R, et al. Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochim Biophys Acta (BBA)-Biomembranes. 2010;1798(11):2048–2057. doi: 10.1016/j.bbamem.2010.07.014
- Ahmad R, Kumar B, Thapa I, et al. Loss of claudin-3 expression increases colitis risk by promoting Gut Dysbiosis. Gut Microbes. 2023;15(2):2282789. doi: 10.1080/19490976.2023.2282789
- Zhu L, Han J, Li L, et al. Claudin family participates in the pathogenesis of inflammatory bowel diseases and colitis-associated colorectal cancer. Front Immunol. 2019;10:1441. doi: 10.3389/fimmu.2019.01441
- Orea MJ, Angulo JC, Gonzalez-Corpas A, et al. Claudin-3 loss of expression is a prognostic marker in castration-resistant prostate cancer. Int J Mol Sci. 2023;24(1):803. doi: 10.3390/ijms24010803
- Yang G, Jian L, Chen Q. Comprehensive analysis of expression and prognostic value of the claudin family in human breast cancer. Aging (Albany NY). 2021;13(6):8777. doi: 10.18632/aging.202687
- Ren F, Zhao Q, Zhao M, et al. Immune infiltration profiling in gastric cancer and their clinical implications. Cancer Sci. 2021;112(9):3569–3584. doi: 10.1111/cas.15057
- Zhang Z, Yu W, Chen S, et al. Methylation of the claudin-3 promoter predicts the prognosis of advanced gastric adenocarcinoma. Oncol Rep. 2018;40(1):49–60. doi: 10.3892/or.2018.6411
- Matsuda Y, Semba S, Ueda J, et al. Gastric and intestinal claudin expression at the invasive front of gastric carcinoma. Cancer Sci. 2007;98(7):1014–1019. doi: 10.1111/j.1349-7006.2007.00490.x
- Koelink PJ, Overbeek SA, Braber S, et al. Targeting chemokine receptors in chronic inflammatory diseases: an extensive review. Pharmacol Ther. 2012;133(1):1–18. doi: 10.1016/j.pharmthera.2011.06.008
- Ma L, Yin W, Ma H, et al. Targeting claudin-3 suppresses stem cell-like phenotype in nonsquamous non-small-cell lung carcinoma. Lung Cancer Manag. 2019;8(1):LMT04. doi: 10.2217/lmt-2018-0010
- Jääskeläinen A, Soini Y, Jukkola-Vuorinen A, et al. High-level cytoplasmic claudin 3 expression is an independent predictor of poor survival in triple-negative breast cancer. BMC Cancer. 2018;18:1–10. doi: 10.1186/s12885-018-4141-z
- Chakraborty P, William Buaas F, Sharma M, et al. Androgen-dependent sertoli cell tight junction remodeling is mediated by multiple tight junction components. Mol Endocrinol. 2014;28(7):1055–1072. doi: 10.1210/me.2013-1134
- Yuan M, Chen X, Sun Y, et al. ZDHHC12-mediated claudin-3 S-palmitoylation determines ovarian cancer progression. Acta Pharm Sin B. 2020;10(8):1426–1439. doi: 10.1016/j.apsb.2020.03.008
- de Mattos RLM, Kanno DT, Campos FG, et al. Tissue Content and Pattern of Expression of Claudin-3 and Occludin in Normal and Neoplastic Tissues in Patients with Colorectal Cancer. J Gastrointest Surg. 2022;26(11):2351–2353. doi: 10.1007/s11605-022-05362-5
- Lei N, Cheng Y, Wan J, et al. Claudin-3 inhibits tumor-induced lymphangiogenesis via regulating the PI3K signaling pathway in lymphatic endothelial cells. Sci Rep. 2022;12(1):17440. doi: 10.1038/s41598-022-22156-6
- Michikawa H, Fujita-Yoshigaki J, Sugiya H. Enhancement of barrier function by overexpression of claudin-4 in tight junctions of submandibular gland cells. Cell Tissue Res. 2008;334(2):255–264. doi: 10.1007/s00441-008-0689-2
- Hou J, Renigunta A, Yang J, Waldegger S. Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization. Proc Natl Acad Sci. 2010;107(42):18010–18015. doi: 10.1073/pnas.1009399107
- Chen S, Zhou B, Willis B, et al. Effects of transdifferentiation and EGF on claudin isoform expression in alveolar epithelial cells. J Appl Physiol. 2005;98(1):322–328. doi: 10.1152/japplphysiol.00681.2004
- Kage H, Flodby P, Gao D, et al. Claudin 4 knockout mice: normal physiological phenotype with increased susceptibility to lung injury. Am J Physiol Cell Mol Physiol. 2014;307(7):L524–L536. doi: 10.1152/ajplung.00077.2014
- Kwon M, Kim S, Jeong H, et al. Claudin-4 overexpression is associated with epigenetic derepression in gastric carcinoma. Lab Investig. 2011;91(11):1652–1667. doi: 10.1038/labinvest.2011.117
- Lin X, Shang X, Manorek G, Howell S. Regulation of the epithelial-mesenchymal transition by claudin-3 and claudin-4. PLoS One. 2013;8(6):e67496. doi: 10.1371/journal.pone.0067496
- Hwang T, Changchien T, Wang C, Wu C. Claudin-4 expression in gastric cancer cells enhances the invasion and is associated with the increased level of matrix metalloproteinase-2 and-9 expression. Oncol Lett. 2014;8(3):1367–1371. doi: 10.3892/ol.2014.2295
- Maeda T, Murata M, Chiba H, et al. Claudin-4-targeted therapy using Clostridium perfringens enterotoxin for prostate cancer. Prostate. 2012;72(4):351–360. doi: 10.1002/pros.21436
- Fujiwara-Tani R, Mori S, Ogata R, et al. Claudin-4: A New Molecular Target for Epithelial Cancer Therapy. Int J Mol Sci. 2023;24(6). doi: 10.3390/ijms24065494
- Liu W, Li M. The role of claudin-4 in the development of gastric cancer. Scand J Gastroenterol. 2020;55(9):1072–1078. doi: 10.1080/00365521.2020.1795923
- Owari T, Sasaki T, Fujii K, et al. Role of nuclear claudin-4 in renal cell carcinoma. Int J Mol Sci. 2020;21(21):8340. doi: 10.3390/ijms21218340
- Nakashima C, Yamamoto K, Kishi S, et al. Clostridium perfringens enterotoxin induces claudin-4 to activate YAP in oral squamous cell carcinomas. Oncotarget. 2020;11(4):309–321. doi: 10.18632/oncotarget.27424
- Yamamoto TM, Webb PG, Davis DM, et al. Loss of claudin-4 reduces DNA damage repair and increases sensitivity to PARP inhibitors. Mol Cancer Ther. 2022;21(4):647–657. doi: 10.1158/1535-7163.MCT-21-0827
- Michl P, Barth C, Buchholz M, et al. Claudin-4 expression decreases invasiveness and metastatic potential of pancreatic cancer. Cancer Res. 2003;63(19):6265–6271.
- Lv J, Hu W, Yang Z, et al. Focusing on claudin-5: a promising candidate in the regulation of BBB to treat ischemic stroke. Prog Neurobiol. 2018;161:79–96. doi: 10.1016/j.pneurobio.2017.12.001
- Hashimoto Y, Campbell M, Tachibana K, et al. Claudin-5: a pharmacological target to modify the permeability of the blood–brain barrier. Biol Pharm Bull. 2021;44(10):1380–1390. doi: 10.1248/bpb.b21-00408
- Geng P, Yu F, Tan D, et al. Involvement of claudin-5 in H2S-induced acute lung injury. J Toxicol Sci. 2020;45(5):293–304. doi: 10.2131/jts.45.293
- Wang M, Guo J, Zhao YQ, Wang JP. IL-21 mediates microRNA-423-5p/claudin-5 signal pathway and intestinal barrier function in inflammatory bowel disease. Aging (Albany NY). 2020;12(16):16099. doi: 10.18632/aging.103566
- Luo T, Liu H, Chen B, et al. A novel role of claudin-5 in prevention of mitochondrial fission against ischemic/hypoxic stress in cardiomyocytes. Can J Cardiol. 2021;37(10):1593–1606. doi: 10.1016/j.cjca.2021.03.021
- Molins B, Mora A, Romero-Vazquez S, et al. Shear stress modulates inner blood retinal barrier phenotype. Exp Eye Res. 2019;187:107751. doi: 10.1016/j.exer.2019.107751
- Someya H, Ito M, Nishio Y, et al. Osteopontin-induced vascular hyperpermeability through tight junction disruption in diabetic retina. Exp Eye Res. 2022;220:109094. doi: 10.1016/j.exer.2022.109094
- Escudero-Esparza A, Jiang W, Martin T. Claudin-5 is involved in breast cancer cell motility through the N-WASP and ROCK signalling pathways. J Exp Clin Cancer Res. 2012;31:1–18. doi: 10.1186/1756-9966-31-43
- Huang S, Zhang J, Li Y, et al. Downregulation of Claudin5 promotes malignant progression and radioresistance through Beclin1-mediated autophagy in esophageal squamous cell carcinoma. J Transl Med. 2023;21(1):379. doi: 10.1186/s12967-023-04248-7
- Nissi R, Talvensaari-Mattila A, Kuvaja P, et al. Claudin-5 is associated with elevated TATI and CA125 levels in mucinous ovarian borderline tumors. Anticancer Res. 2015;35(2):973–976.
- Ma S, Li Q, Peng J, et al. Claudin-5 regulates blood-brain barrier permeability by modifying brain microvascular endothelial cell proliferation, migration, and adhesion to prevent lung cancer metastasis. CNS Neurosci Ther. 2017;23(12):947–960. doi: 10.1111/cns.12764
- Sakaguchi T, Suzuki S, Higashi H, et al. Expression of tight junction protein claudin-5 in tumor vessels and sinusoidal endothelium in patients with hepatocellular carcinoma. J Surg Res. 2008;147(1):123–131. doi: 10.1016/j.jss.2007.07.013
- Brinch M, Hatt L, Singh R, et al. Identification of circulating fetal cell markers by microarray analysis. Prenat Diagn. 2012;32(8):742–751. doi: 10.1002/pd.3894
- Zhang C, Guo C, Li Y, et al. Identification of claudin-6 as a molecular biomarker in pan-cancer through multiple omics integrative analysis. Front Cell Dev Biol. 2021;9:726656. doi: 10.3389/fcell.2021.726656
- Reinhard K, Rengstl B, Oehm P, et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science. 2020;367(6476):446–453. doi: 10.1126/science.aay5967
- Stadler C, Bähr-Mahmud H, Plum L, et al. Characterization of the first-in-class T-cell-engaging bispecific single-chain antibody for targeted immunotherapy of solid tumors expressing the oncofetal protein claudin 6. Oncoimmunology. 2016;5(3):e1091555. doi: 10.1080/2162402X.2015.1091555
- Simon AG, Lyu SI, Laible M, et al. The tight junction protein claudin 6 is a potential target for patient-individualized treatment in esophageal and gastric adenocarcinoma and is associated with poor prognosis. J Transl Med. 2023;21(1):552. doi: 10.1186/s12967-023-04433-8
- Zavala-Zendejas V, Torres-Martinez A, Salas-Morales B, et al. Claudin-6, 7, or 9 overexpression in the human gastric adenocarcinoma cell line AGS increases its invasiveness, migration, and proliferation rate. Cancer Invest. 2011;29(1):1–11. doi: 10.3109/07357907.2010.512594
- Yu S, Zhang Y, Li Q, et al. CLDN6 promotes tumor progression through the YAP1-snail1 axis in gastric cancer. Cell Death Dis. 2019;10(12):949. doi: 10.1038/s41419-019-2168-y
- Huang L, Zhao C, Sun K, et al. Downregulation of CLDN6 inhibits cell proliferation, migration, and invasion via regulating EGFR/AKT/mTOR signalling pathway in hepatocellular carcinoma. Cell Biochem Funct. 2020;38(5):541–548. doi: 10.1002/cbf.3489
- Jia H, Chai X, Li S, et al. Identification of claudin-2,-6,-11 and-14 as prognostic markers in human breast carcinoma. Int J Clin Exp Pathol. 2019;12(6):2195.
- Kohmoto T, Masuda K, Shoda K, et al. Claudin-6 is a single prognostic marker and functions as a tumor-promoting gene in a subgroup of intestinal type gastric cancer. Gastric Cancer. 2020;23:403–417. doi: 10.1007/s10120-019-01014-x
- Gao F, Li M, Xiang R, et al. Expression of CLDN6 in tissues of gastric cancer patients: Association with clinical pathology and prognosis. Oncol Lett. 2019;17(5):4621–4625. doi: 10.3892/ol.2019.10129
- Lu YZ, Li Y, Zhang T, Han S. Claudin-6 is down-regulated in gastric cancer and its potential pathway. Cancer Biomarkers. 2020;28(3):329–340. doi: 10.3233/CBM-201554
- Ren Y, Wu Q, Liu Y, et al. Gene silencing of claudin-6 enhances cell proliferation and migration accompanied with increased MMP-2 activity via p38 MAPK signaling pathway in human breast epithelium cell line HBL-100. Mol Med Rep. 2013;8(5):1505–1510. doi: 10.3892/mmr.2013.1675
- Ding L, Lu Z, Foreman O, et al. Inflammation and disruption of the mucosal architecture in claudin-7–deficient mice. Gastroenterology. 2012;142(2):305–315.
- Xing T, Camacho Salazar R, Chen YH. Animal models for studying epithelial barriers in neonatal necrotizing enterocolitis, inflammatory bowel disease and colorectal cancer. Tissue Barriers. 2017;5(4):e1356901. doi: 10.1080/21688370.2017.1356901
- Xiao Y, Lian H, Zhong X, et al. Matrix metalloproteinase 7 contributes to intestinal barrier dysfunction by degrading tight junction protein Claudin-7. Front Immunol. 2022;13:1020902. doi: 10.3389/fimmu.2022.1020902
- Xing T, Benderman L, Sabu S, et al. Tight Junction Protein Claudin-7 Is Essential for Intestinal Epithelial Stem Cell Self-Renewal and Differentiation. Cell Mol Gastroenterol Hepatol. 2020;9(4):641–659. doi: 10.1016/j.jcmgh.2019.12.005
- Bernardi M, Logullo A, Pasini F, et al. Prognostic significance of CD24 and claudin-7 immunoexpression in ductal invasive breast cancer. Oncol Rep. 2012;27(1):28–38. doi: 10.3892/or.2011.1477
- Alikanoglu A, Gunduz S, Demirpence O, et al. Expression pattern and prognostic significance of claudin 1, 4 and 7 in pancreatic cancer. Asian Pac J Cancer Prev. 2015;16(10):4387–4392. doi: 10.7314/apjcp.2015.16.10.4387
- Dahiya N, Becker K, Wood W et l. Claudin-7 is frequently overexpressed in ovarian cancer and promotes invasion. PLoS One. 2011;6(7):e22119. doi: 10.1371/journal.pone.0022119
- Xu C, Ding Y, Wang K, et al. Claudin-7 deficiency promotes stemness properties in colorectal cancer through Sox9-mediated Wnt/β-catenin signalling. J Transl Med. 2021;19:1–15. doi: 10.1186/s12967-021-02983-3
- Lu Z, Ding L, Hong H, et al. Claudin-7 inhibits human lung cancer cell migration and invasion through ERK/MAPK signaling pathway. Exp Cell Res. 2011;317(13):1935–1946. doi: 10.1016/j.yexcr.2011.05.019
- Suligoj T, Vigsnæs L, Abbeele P, et al. Effects of Human Milk Oligosaccharides on the Adult Gut Microbiota and Barrier Function. Nutrients. 2020;12(9). doi: 10.3390/nu12092808
- Zhang Y, Zheng A, Lu H, et al. The expression and prognostic significance of claudin-8 and androgen receptor in breast cancer. Onco Targets Ther. Published online 2020:3437–3448. doi: 10.2147/OTT.S242406
- Smith P, Choksi Y, Markham N, et al. Colon epithelial cell TGFβ signaling modulates the expression of tight junction proteins and barrier function in mice. Am J Physiol Gastrointest Liver Physiol. 2021;320(6):G936–G957. doi: 10.1152/ajpgi.00053.2021
- Okamoto E, Matsuda S, Yoshino Y, et al. Regulation of Paracellular Fluxes of Amino Acids by Claudin-8 in Normal Mouse Intestinal MCE301 Cells. Nutrients. 2023;15(6). doi: 10.3390/nu15061346
- Ashikari D, Takayama K, Obinata D, et al. CLDN8, an androgen-regulated gene, promotes prostate cancer cell proliferation and migration. Cancer Sci. 2017;108(7):1386–1393. doi: 10.1111/cas.13269
- Sutinen P, Malinen M, Heikkinen S, Palvimo J. SUMOylation modulates the transcriptional activity of androgen receptor in a target gene and pathway selective manner. Nucleic Acids Res. 2014;42(13):8310–8319. doi: 10.1093/nar/gku543
- Meng J, Mostaghel E, Vakar-Lopez F, et al. Testosterone regulates tight junction proteins and influences prostatic autoimmune responses. Horm Cancer. 2011;2(3):145–156. doi: 10.1007/s12672-010-0063-1
- Cheng B, Rong A, Zhou Q, Li W. CLDN8 promotes colorectal cancer cell proliferation, migration, and invasion by activating MAPK/ERK signaling. Cancer Manag Res. 2019;11:3741–3751. doi: 10.2147/CMAR.S189558
- Gröne J, Weber B, Staub E, et al. Differential expression of genes encoding tight junction proteins in colorectal cancer: frequent dysregulation of claudin-1, -8 and -12. Int J Colorectal Dis. 2007;22(6):651–659. doi: 10.1007/s00384-006-0197-3
- Cherradi S, Martineau P, Gongora C, Del Rio M. Claudin gene expression profiles and clinical value in colorectal tumors classified according to their molecular subtype. Cancer Manag Res. 2019;11:1337–1348. doi: 10.2147/CMAR.S188192
- Endo Y, Sugimoto K, Kobayashi M, et al. Claudin-9 is a novel prognostic biomarker for endometrial cancer. Int J Oncol. 2022;61(5):1–11. doi: 10.3892/ijo.2022.5425
- Zhuang X, Martin T, Ruge F, et al. Expression of Claudin-9 (CLDN9) in Breast Cancer, the Clinical Significance in Connection with Its Subcoat Anchorage Proteins ZO-1 and ZO-3 and Impact on Drug Resistance. Biomedicines. 2023;11(12). doi: 10.3390/biomedicines11123136
- Davidson B, Doutel D, Holth A, Nymoen D. Claudin-10 is a new candidate prognostic marker in metastatic high-grade serous carcinoma. Virchows Arch. 2023;482(6):975–982. doi: 10.1007/s00428-023-03541-6
- Sun L, Feng L, Cui J. Increased expression of claudin-17 promotes a malignant phenotype in hepatocyte via Tyk2/Stat3 signaling and is associated with poor prognosis in patients with hepatocellular carcinoma. Diagn Pathol. 2018;13:1–10. doi: 10.1186/s13000-018-0749-1
- Yang P, Zhang M, Liu X, Pu H. MicroRNA-421 promotes the proliferation and metastasis of gastric cancer cells by targeting claudin-11. Exp Ther Med. 2017;14(3):2625–2632. doi: 10.3892/etm.2017.4798
- Tian X, He Y, Han Z, et al. The Cytoplasmic Expression Of CLDN12 Predicts An Unfavorable Prognosis And Promotes Proliferation And Migration Of Osteosarcoma. Cancer Manag Res. 2019;11:9339–9351. doi: 10.2147/CMAR.S229441
- Zhang X, Wang X, Wang A, et al. CLDN10 promotes a malignant phenotype of osteosarcoma cells via JAK1/Stat1 signaling. J Cell Commun Signal. 2019;13:395–405. doi: 10.1007/s12079-019-00509-7
- Shu Y, Zhang W, Hou Q, et al. Prognostic significance of frequent CLDN18-ARHGAP26/6 fusion in gastric signet-ring cell cancer. Nat Commun. 2018;9(1):2447.
- Ungureanu B, Lungulescu C, Pirici D, et al. Clinicopathologic relevance of Claudin 18.2 expression in gastric cancer: a meta-analysis. Front Oncol. 2021;11:643872. doi: 10.3389/fonc.2021.643872
- Li W, Jeng Y, Yang C. Claudin-18 as a marker for identifying the stomach and pancreatobiliary tract as the primary sites of metastatic adenocarcinoma. Am J Surg Pathol. 2020;44(12):1643–1648. doi: 10.1097/PAS.0000000000001583
- Luo J, Chimge N, Zhou B, et al. CLDN18. 1 attenuates malignancy and related signaling pathways of lung adenocarcinoma in vivo and in vitro. Int J cancer. 2018;143(12):3169–3180. doi: 10.1002/ijc.31734
- Kiyokawa T, Hoang L, Pesci A, et al. Claudin-18 as a promising surrogate marker for endocervical gastric-type carcinoma. Am J Surg Pathol. 2022;46(5):628–636. doi: 10.1097/PAS.0000000000001847
- Primeaux M, Liu X, Gowrikumar S, et al. Claudin-1 interacts with EPHA2 to promote cancer stemness and chemoresistance in colorectal cancer. Cancer Lett. 2023;579:216479. doi: 10.1016/j.canlet.2023.216479
- Gowrikumar S, Primeaux M, Pravoverov K, et al. A claudin-based molecular signature identifies high-risk, chemoresistant colorectal cancer patients. Cells. 2021;10(9):2211. doi: 10.3390/cells10092211
- Zhao Z, Li J, Jiang Y, et al. CLDN1 increases drug resistance of non-small cell lung cancer by activating autophagy via up-regulation of ULK1 phosphorylation. Med Sci Monit Int Med J Exp Clin Res. 2017;23:2906. doi: 10.12659/msm.904177
- Akizuki R, Maruhashi R, Eguchi H, et al. Decrease in paracellular permeability and chemosensitivity to doxorubicin by claudin-1 in spheroid culture models of human lung adenocarcinoma A549 cells. Biochim Biophys Acta (BBA)-Molecular Cell Res. 2018;1865(5):769–780. doi: 10.1016/j.bbamcr.2018.03.001
- Hoggard J, Fan J, Lu Z, et al. Claudin-7 increases chemosensitivity to cisplatin through the upregulation of caspase pathway in human NCI-H 522 lung cancer cells. Cancer Sci. 2013;104(5):611–618. doi: 10.1111/cas.12135
- Yang M, Li Y, Ruan Y, et al. CLDN6 enhances chemoresistance to ADM via AF-6/ERKs pathway in TNBC cell line MDAMB231. Mol Cell Biochem. 2018;443:169–180. doi: 10.1007/s11010-017-3221-8
- Li J. Targeting claudins in cancer: diagnosis, prognosis and therapy. Am J Cancer Res. 2021;11(7):3406.
- Sahin U, Türeci Ö, Manikhas G, et al. FAST: a randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18. 2-positive gastric and gastro-oesophageal adenocarcinoma. Ann Oncol. 2021;32(5):609–619. doi: 10.1016/j.annonc.2021.02.005
- Romero D. Zolbetuximab moves into the SPOTLIGHT. Nat Rev Clin Oncol. 2023;20(6):354. doi: 10.1038/s41571-023-00773-y
- Haanen J, Mackensen A, Koenecke C, et al. Abstract CT002: BNT211: a phase I trial to evaluate safety and efficacy of CLDN6 CAR-T cells and CARVac-mediated in vivo expansion in patients with CLDN6-positive advanced solid tumors. Cancer Res. 2022;82(12_Supplement):CT002–CT002. doi: 10.1158/1538-7445.AM2022-CT002
- Torres JB, Knight JC, Mosley MJ, et al. Imaging of Claudin-4 in Pancreatic Ductal Adenocarcinoma Using a Radiolabelled Anti-Claudin-4 Monoclonal Antibody. Mol imaging Biol. 2018;20(2):292–299. doi: 10.1007/s11307-017-1112-8
- Kuwada M, Chihara Y, Luo Y, et al. Pro-chemotherapeutic effects of antibody against extracellular domain of claudin-4 in bladder cancer. Cancer Lett. 2015;369(1):212–221. doi: 10.1016/j.canlet.2015.08.019
- Rabinsky E, Joshi B, Pant A, et al. Overexpressed claudin-1 can be visualized endoscopically in colonic adenomas in vivo. Cell Mol Gastroenterol Hepatol. 2016;2(2):222–237. doi: 10.1016/j.jcmgh.2015.12.001
Supplementary files
