The claudin family of proteins in the pathogenesis and treatment of malignancies: current insights and future prospects

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review presents data concerning claudins, the proteins of tight junctions, and their role in the pathogenesis and therapy of malignancies. Particular attention is paid to the variability in claudin expression levels, their intracellular localization in tumors, and the prognostic significance of these variations in cancer. The review highlights the role of claudins in metastatic spread, invasion, and tumor cell resistance to antitumor drug therapy. Moreover, the potential of claudins as targets for novel diagnostic and treatment methods for malignant neoplasms is also discussed.

About the authors

Sergei V. Boichuk

Department of Pathology, Kazan State Medical University; Institute of Fundamental Medicine and Biology, Kazan Federal University; Russian Medical Academy of Continuous Professional Education

Author for correspondence.
Email: boichuksergei@mail.ru
ORCID iD: 0000-0003-2415-1084
SPIN-code: 8058-6246

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Kazan; Kazan; Moscow

Firyuza F. Bikinieva

Department of Pathology, Kazan State Medical University

Email: firuza1995@mail.ru
ORCID iD: 0000-0002-9012-6525
SPIN-code: 9014-1478

MD, Cand Sci. (Medicine)

Russian Federation, Kazan

Pavel B. Kopnin

Blokhin National Medical Research Centre of Oncology

Email: pbkopnin@mail.ru
ORCID iD: 0000-0002-2078-4274
SPIN-code: 2339-5729

Cand Sci. (Biology)

Russian Federation, Moscow

References

  1. Mineta K, Yamamoto Y, Yamazaki Y, et al. Predicted expansion of the claudin multigene family. FEBS Lett. 2011;585(4):606–612. doi: 10.1016/j.febslet.2011.01.028
  2. Blackman B, Russell T, Nordeen SK, et al. Claudin 7 expression and localization in the normal murine mammary gland and murine mammary tumors. Breast Cancer Res. 2005;7:1–8. doi: 10.1186/bcr988
  3. Van Itallie CM, Anderson JM. Claudin interactions in and out of the tight junction. Tissue barriers. 2013;1(3):e25247. doi: 10.4161/tisb.25247
  4. Li J. Context-dependent roles of claudins in tumorigenesis. Front Oncol. 2021;11:676781. doi: 10.3389/fonc.2021.676781
  5. Wang DW, Zhang WH, Galiullin D, et al. The role and mechanism of claudins in cancer. Front Oncol. 2022;12:1051497. doi: 10.3389/fonc.2022.1051497
  6. Pacheco A, Carretero L, Torres C, et al. NISCH syndrome: An extremely rare cause of neonatal cholestasis. J Hepatol. 2020;73(5):1257–1258. doi: 10.1016/j.jhep.2020.07.006
  7. Sakai N, Chiba H, Fujita H, et al. Expression patterns of claudin family of tight-junction proteins in the mouse prostate. Histochem Cell Biol. 2007;127:457–462. doi: 10.1007/s00418-007-0269-7
  8. Sladojevic N, Stamatovic SM, Johnson AM, et al. Claudin-1-dependent destabilization of the blood–brain barrier in chronic stroke. J Neurosci. 2019;39(4):743–757. doi: 10.1523/JNEUROSCI.1432-18.2018
  9. Bergmann S, von Buenau B, Vidal-Y-Sy S, et al. Claudin-1 decrease impacts epidermal barrier function in atopic dermatitis lesions dose-dependently. Sci Rep. 2020;10(1):2024. doi: 10.1038/s41598-020-58718-9
  10. Iida M, Ohtomo S, Wada NA, et al. TNF-α induces Claudin-1 expression in renal tubules in Alport mice. PLoS One. 2022;17(3):e0265081. doi: 10.1371/journal.pone.0265081
  11. Singh AB, Sharma A, Smith JJ, et al. Claudin-1 up-regulates the repressor ZEB-1 to inhibit E-cadherin expression in colon cancer cells. Gastroenterology. 2011;141(6):2140–2153. doi: 10.1053/j.gastro.2011.08.038
  12. Dhawan P, Singh AB, Deane NG, et al. Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest. 2005;115(7):1765–1776. doi: 10.1172/JCI24543
  13. Yamamoto D, Kayamori K, Sakamoto K, et al. Intracellular claudin-1 at the invasive front of tongue squamous cell carcinoma is associated with lymph node metastasis. Cancer Sci. 2020;111(2):700–712. doi: 10.1111/cas.14249
  14. Elsayed AM, Mahmoud EI, Salem MM, Khairy RA. Immunohistochemical Expression of Claudin-1 and Claudin-4 in Urothelial Carcinoma of the Urinary Bladder. Asian Pac J Cancer Prev. 2024;25(2):637–646. doi: 10.31557/APJCP.2024.25.2.637
  15. Ouban A, Ameer OZ, Quek KJ, et al. Detection of Increased Expression of Claudin-1 in Triple-Negative Breast Cancer: Analysis and Clinical-Pathological Correlation. Cureus. 2023;15(3):e36648. doi: 10.7759/cureus.36648
  16. Zhou B, Moodie A, Blanchard A, et al. Claudin 1 in breast cancer: new insights. J Clin Med. 2015;4(12):1960–1976. doi: 10.3390/jcm4121952
  17. Miskad UA, Aswidah A, Dahlan H, et al. The Role of Claudin-1 Expression in Follicular and Papillary Thyroid Neoplasm. Asian Pac J Cancer Prev. 2022;23(12):4023–4027. doi: 10.31557/APJCP.2022.23.12.4023
  18. Leotlela PD, Wade MS, Duray PH, et al. Claudin-1 overexpression in melanoma is regulated by PKC and contributes to melanoma cell motility. Oncogene. 2007;26(26):3846–3856. doi: 10.1038/sj.onc.1210155
  19. English DP, Santin AD. Claudins overexpression in ovarian cancer: potential targets for Clostridium Perfringens Enterotoxin (CPE) based diagnosis and therapy. Int J Mol Sci. 2013;14(5):10412–10437. doi: 10.3390/ijms140510412
  20. Tsukahara M, Nagai H, Kamiakito T, et al. Distinct expression patterns of claudin-1 and claudin-4 in intraductal papillary-mucinous tumors of the pancreas. Pathol Int. 2005;55(2):63–69. doi: 10.1111/j.1440-1827.2005.01793.x
  21. Väre P, Loikkanen I, Hirvikoski P, et al. Low claudin expression is associated with high Gleason grade in prostate adenocarcinoma. Oncol Rep. 2008;19(1):25–31.
  22. Higashi Y, Suzuki S, Sakaguchi T, et al. Loss of claudin-1 expression correlates with malignancy of hepatocellular carcinoma. J Surg Res. 2007;139(1):68–76. doi: 10.1016/j.jss.2006.08.038
  23. Paschoud S, Bongiovanni M, Pache JC, Citi S. Claudin-1 and claudin-5 expression patterns differentiate lung squamous cell carcinomas from adenocarcinomas. Mod Pathol. 2007;20(9):947–954. doi: 10.1038/modpathol.3800835
  24. Stebbing J, Filipovic A, Giamas G. Claudin-1 as a promoter of EMT in hepatocellular carcinoma. Oncogene. 2013;32(41):4871–4872. doi: 10.1038/onc.2012.591
  25. Suh Y, Yoon CH, Kim RK, et al. Claudin-1 induces epithelial–mesenchymal transition through activation of the c-Abl-ERK signaling pathway in human liver cells. Oncogene. 2013;32(41):4873–4882. doi: 10.1038/onc.2012.505
  26. Fortier AM, Asselin E, Cadrin M. Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensitivity through claudin1 up-regulation. J Biol Chem. 2013;288(16):11555–11571. doi: 10.1074/jbc.M112.428920
  27. Giampieri S, Manning C, Hooper S, et al. Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol. 2009;11(11):1287–1296. doi: 10.1038/ncb1973
  28. Aimes RT, Quigley JP. Matrix metalloproteinase-2 is an interstitial collagenase: inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type i collagen generating the specific ¾-and ¼-length fragments (*). J Biol Chem. 1995;270(11):5872–5876. doi: 10.1074/jbc.270.11.5872
  29. Oku N, Sasabe E, Ueta E, et al. Tight junction protein claudin-1 enhances the invasive activity of oral squamous cell carcinoma cells by promoting cleavage of laminin-5 γ2 chain via matrix metalloproteinase (MMP)-2 and membrane-type MMP-1. Cancer Res. 2006;66(10):5251–5257. doi: 10.1158/0008-5472.CAN-05-4478
  30. Miyamori H, Takino T, Kobayashi Y, et al. Claudin promotes activation of pro-matrix metalloproteinase-2 mediated by membrane-type matrix metalloproteinases. J Biol Chem. 2001;276(30):28204–28211. doi: 10.1074/jbc.M103083200
  31. Pope JL, Ahmad R, Bhat A, et al. Claudin-1 overexpression in intestinal epithelial cells enhances susceptibility to adenamatous polyposis coli-mediated colon tumorigenesis. Mol Cancer. 2014;13:1–13. doi: 10.1186/1476-4598-13-167
  32. Venugopal S, Anwer S, Szaszi K. Claudin-2: Roles beyond Permeability Functions. Int J Mol Sci. 2019;20(22). doi: 10.3390/ijms20225655
  33. Barrett KE. Claudin-2 pore causes leak that breaches the dam in intestinal inflammation. J Clin Invest. 2020;130(10):5100–5101. doi: 10.1172/JCI140528
  34. Oami T, Abtahi S, Shimazui T, et al. Claudin-2 upregulation enhances intestinal permeability, immune activation, dysbiosis, and mortality in sepsis. Proc Natl Acad Sci U S A. 2024;121(10):e2217877121. doi: 10.1073/pnas.2217877121
  35. Beggs MR, Young K, Pan W, et al. Claudin-2 and claudin-12 form independent, complementary pores required to maintain calcium homeostasis. Proc Natl Acad Sci. 2021;118(48):e2111247118. doi: 10.1073/pnas.2111247118
  36. Curry J, Saurette M, Askari M, et al. Claudin-2 deficiency associates with hypercalciuria in mice and human kidney stone disease. J Clin Invest. 2020;130(4):1948–1960. doi: 10.1172/JCI127750
  37. Tabaries S, Annis M, Lazaris A, et al. Claudin-2 promotes colorectal cancer liver metastasis and is a biomarker of the replacement type growth pattern. Commun Biol. 2021;4(1):657. doi: 10.1038/s42003-021-02189-9
  38. Aung P, Mitani Y, Sanada Y, et al. Differential expression of claudin-2 in normal human tissues and gastrointestinal carcinomas. Virchows Arch. 2006;448:428–434. doi: 10.1007/s00428-005-0120-2
  39. Dhawan P, Ahmad R, Chaturvedi R, et al. Claudin-2 expression increases tumorigenicity of colon cancer cells: role of epidermal growth factor receptor activation. Oncogene. 2011;30(29):3234–3247. doi: 10.1038/onc.2011.43
  40. Kinugasa T, Huo Q, Higashi D, et al. Selective up-regulation of claudin-1 and claudin-2 in colorectal cancer. Anticancer Res. 2007;27(6A):3729–3734.
  41. Jung H, Jun K, Jung J, et al. The expression of claudin-1, claudin-2, claudin-3, and claudin-4 in gastric cancer tissue. J Surg Res. 2011;167(2):e185-e191. doi: 10.1016/j.jss.2010.02.010
  42. Soini Y. Claudins 2, 3, 4, and 5 in Paget’s disease and breast carcinoma. Hum Pathol. 2004;35(12):1531–1536.
  43. Szasz A, Tokes A, Micsinai M, et al. Prognostic significance of claudin expression changes in breast cancer with regional lymph node metastasis. Clin Exp Metastasis. 2011;28:55–63. doi: 10.1007/s10585-010-9357-5
  44. Kim T, Huh J, Lee S, et al. Down-regulation of claudin-2 in breast carcinomas is associated with advanced disease. Histopathology. 2008;53(1):48–55. doi: 10.1111/j.1365-2559.2008.03052.x
  45. Kimbung S, Kovacs A, Bendahl PO, et al. Claudin-2 is an independent negative prognostic factor in breast cancer and specifically predicts early liver recurrences. Mol Oncol. 2014;8(1):119–128. doi: 10.1016/j.molonc.2013.10.002
  46. Tabaries S, Dong Z, Annis M, et al. Claudin-2 is selectively enriched in and promotes the formation of breast cancer liver metastases through engagement of integrin complexes. Oncogene. 2011;30(11):1318–1328. doi: 10.1038/onc.2010.518
  47. Buchert M, Papin M, Bonnans C, et al. Symplekin promotes tumorigenicity by up-regulating claudin-2 expression. Proc Natl Acad Sci. 2010;107(6):2628–2633. doi: 10.1073/pnas.0903747107
  48. Kaarteenaho-Wiik R, Soini Y. Claudin-1,− 2,− 3,− 4,− 5, and− 7 in usual interstitial pneumonia and sarcoidosis. J Histochem Cytochem. 2009;57(3):187–195. doi: 10.1369/jhc.2008.951566
  49. Hewitt K, Agarwal R, Morin P. The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer. 2006;6:1–8. doi: 10.1186/1471-2407-6-186
  50. Kyuno D, Yamaguchi H, Ito T, et al. Targeting tight junctions during epithelial to mesenchymal transition in human pancreatic cancer. World J Gastroenterol WJG. 2014;20(31):10813. doi: 10.3748/wjg.v20.i31.10813
  51. Milatz S, Krug SM, Rosenthal R, et al. Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochim Biophys Acta (BBA)-Biomembranes. 2010;1798(11):2048–2057. doi: 10.1016/j.bbamem.2010.07.014
  52. Ahmad R, Kumar B, Thapa I, et al. Loss of claudin-3 expression increases colitis risk by promoting Gut Dysbiosis. Gut Microbes. 2023;15(2):2282789. doi: 10.1080/19490976.2023.2282789
  53. Zhu L, Han J, Li L, et al. Claudin family participates in the pathogenesis of inflammatory bowel diseases and colitis-associated colorectal cancer. Front Immunol. 2019;10:1441. doi: 10.3389/fimmu.2019.01441
  54. Orea MJ, Angulo JC, Gonzalez-Corpas A, et al. Claudin-3 loss of expression is a prognostic marker in castration-resistant prostate cancer. Int J Mol Sci. 2023;24(1):803. doi: 10.3390/ijms24010803
  55. Yang G, Jian L, Chen Q. Comprehensive analysis of expression and prognostic value of the claudin family in human breast cancer. Aging (Albany NY). 2021;13(6):8777. doi: 10.18632/aging.202687
  56. Ren F, Zhao Q, Zhao M, et al. Immune infiltration profiling in gastric cancer and their clinical implications. Cancer Sci. 2021;112(9):3569–3584. doi: 10.1111/cas.15057
  57. Zhang Z, Yu W, Chen S, et al. Methylation of the claudin-3 promoter predicts the prognosis of advanced gastric adenocarcinoma. Oncol Rep. 2018;40(1):49–60. doi: 10.3892/or.2018.6411
  58. Matsuda Y, Semba S, Ueda J, et al. Gastric and intestinal claudin expression at the invasive front of gastric carcinoma. Cancer Sci. 2007;98(7):1014–1019. doi: 10.1111/j.1349-7006.2007.00490.x
  59. Koelink PJ, Overbeek SA, Braber S, et al. Targeting chemokine receptors in chronic inflammatory diseases: an extensive review. Pharmacol Ther. 2012;133(1):1–18. doi: 10.1016/j.pharmthera.2011.06.008
  60. Ma L, Yin W, Ma H, et al. Targeting claudin-3 suppresses stem cell-like phenotype in nonsquamous non-small-cell lung carcinoma. Lung Cancer Manag. 2019;8(1):LMT04. doi: 10.2217/lmt-2018-0010
  61. Jääskeläinen A, Soini Y, Jukkola-Vuorinen A, et al. High-level cytoplasmic claudin 3 expression is an independent predictor of poor survival in triple-negative breast cancer. BMC Cancer. 2018;18:1–10. doi: 10.1186/s12885-018-4141-z
  62. Chakraborty P, William Buaas F, Sharma M, et al. Androgen-dependent sertoli cell tight junction remodeling is mediated by multiple tight junction components. Mol Endocrinol. 2014;28(7):1055–1072. doi: 10.1210/me.2013-1134
  63. Yuan M, Chen X, Sun Y, et al. ZDHHC12-mediated claudin-3 S-palmitoylation determines ovarian cancer progression. Acta Pharm Sin B. 2020;10(8):1426–1439. doi: 10.1016/j.apsb.2020.03.008
  64. de Mattos RLM, Kanno DT, Campos FG, et al. Tissue Content and Pattern of Expression of Claudin-3 and Occludin in Normal and Neoplastic Tissues in Patients with Colorectal Cancer. J Gastrointest Surg. 2022;26(11):2351–2353. doi: 10.1007/s11605-022-05362-5
  65. Lei N, Cheng Y, Wan J, et al. Claudin-3 inhibits tumor-induced lymphangiogenesis via regulating the PI3K signaling pathway in lymphatic endothelial cells. Sci Rep. 2022;12(1):17440. doi: 10.1038/s41598-022-22156-6
  66. Michikawa H, Fujita-Yoshigaki J, Sugiya H. Enhancement of barrier function by overexpression of claudin-4 in tight junctions of submandibular gland cells. Cell Tissue Res. 2008;334(2):255–264. doi: 10.1007/s00441-008-0689-2
  67. Hou J, Renigunta A, Yang J, Waldegger S. Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization. Proc Natl Acad Sci. 2010;107(42):18010–18015. doi: 10.1073/pnas.1009399107
  68. Chen S, Zhou B, Willis B, et al. Effects of transdifferentiation and EGF on claudin isoform expression in alveolar epithelial cells. J Appl Physiol. 2005;98(1):322–328. doi: 10.1152/japplphysiol.00681.2004
  69. Kage H, Flodby P, Gao D, et al. Claudin 4 knockout mice: normal physiological phenotype with increased susceptibility to lung injury. Am J Physiol Cell Mol Physiol. 2014;307(7):L524–L536. doi: 10.1152/ajplung.00077.2014
  70. Kwon M, Kim S, Jeong H, et al. Claudin-4 overexpression is associated with epigenetic derepression in gastric carcinoma. Lab Investig. 2011;91(11):1652–1667. doi: 10.1038/labinvest.2011.117
  71. Lin X, Shang X, Manorek G, Howell S. Regulation of the epithelial-mesenchymal transition by claudin-3 and claudin-4. PLoS One. 2013;8(6):e67496. doi: 10.1371/journal.pone.0067496
  72. Hwang T, Changchien T, Wang C, Wu C. Claudin-4 expression in gastric cancer cells enhances the invasion and is associated with the increased level of matrix metalloproteinase-2 and-9 expression. Oncol Lett. 2014;8(3):1367–1371. doi: 10.3892/ol.2014.2295
  73. Maeda T, Murata M, Chiba H, et al. Claudin-4-targeted therapy using Clostridium perfringens enterotoxin for prostate cancer. Prostate. 2012;72(4):351–360. doi: 10.1002/pros.21436
  74. Fujiwara-Tani R, Mori S, Ogata R, et al. Claudin-4: A New Molecular Target for Epithelial Cancer Therapy. Int J Mol Sci. 2023;24(6). doi: 10.3390/ijms24065494
  75. Liu W, Li M. The role of claudin-4 in the development of gastric cancer. Scand J Gastroenterol. 2020;55(9):1072–1078. doi: 10.1080/00365521.2020.1795923
  76. Owari T, Sasaki T, Fujii K, et al. Role of nuclear claudin-4 in renal cell carcinoma. Int J Mol Sci. 2020;21(21):8340. doi: 10.3390/ijms21218340
  77. Nakashima C, Yamamoto K, Kishi S, et al. Clostridium perfringens enterotoxin induces claudin-4 to activate YAP in oral squamous cell carcinomas. Oncotarget. 2020;11(4):309–321. doi: 10.18632/oncotarget.27424
  78. Yamamoto TM, Webb PG, Davis DM, et al. Loss of claudin-4 reduces DNA damage repair and increases sensitivity to PARP inhibitors. Mol Cancer Ther. 2022;21(4):647–657. doi: 10.1158/1535-7163.MCT-21-0827
  79. Michl P, Barth C, Buchholz M, et al. Claudin-4 expression decreases invasiveness and metastatic potential of pancreatic cancer. Cancer Res. 2003;63(19):6265–6271.
  80. Lv J, Hu W, Yang Z, et al. Focusing on claudin-5: a promising candidate in the regulation of BBB to treat ischemic stroke. Prog Neurobiol. 2018;161:79–96. doi: 10.1016/j.pneurobio.2017.12.001
  81. Hashimoto Y, Campbell M, Tachibana K, et al. Claudin-5: a pharmacological target to modify the permeability of the blood–brain barrier. Biol Pharm Bull. 2021;44(10):1380–1390. doi: 10.1248/bpb.b21-00408
  82. Geng P, Yu F, Tan D, et al. Involvement of claudin-5 in H2S-induced acute lung injury. J Toxicol Sci. 2020;45(5):293–304. doi: 10.2131/jts.45.293
  83. Wang M, Guo J, Zhao YQ, Wang JP. IL-21 mediates microRNA-423-5p/claudin-5 signal pathway and intestinal barrier function in inflammatory bowel disease. Aging (Albany NY). 2020;12(16):16099. doi: 10.18632/aging.103566
  84. Luo T, Liu H, Chen B, et al. A novel role of claudin-5 in prevention of mitochondrial fission against ischemic/hypoxic stress in cardiomyocytes. Can J Cardiol. 2021;37(10):1593–1606. doi: 10.1016/j.cjca.2021.03.021
  85. Molins B, Mora A, Romero-Vazquez S, et al. Shear stress modulates inner blood retinal barrier phenotype. Exp Eye Res. 2019;187:107751. doi: 10.1016/j.exer.2019.107751
  86. Someya H, Ito M, Nishio Y, et al. Osteopontin-induced vascular hyperpermeability through tight junction disruption in diabetic retina. Exp Eye Res. 2022;220:109094. doi: 10.1016/j.exer.2022.109094
  87. Escudero-Esparza A, Jiang W, Martin T. Claudin-5 is involved in breast cancer cell motility through the N-WASP and ROCK signalling pathways. J Exp Clin Cancer Res. 2012;31:1–18. doi: 10.1186/1756-9966-31-43
  88. Huang S, Zhang J, Li Y, et al. Downregulation of Claudin5 promotes malignant progression and radioresistance through Beclin1-mediated autophagy in esophageal squamous cell carcinoma. J Transl Med. 2023;21(1):379. doi: 10.1186/s12967-023-04248-7
  89. Nissi R, Talvensaari-Mattila A, Kuvaja P, et al. Claudin-5 is associated with elevated TATI and CA125 levels in mucinous ovarian borderline tumors. Anticancer Res. 2015;35(2):973–976.
  90. Ma S, Li Q, Peng J, et al. Claudin-5 regulates blood-brain barrier permeability by modifying brain microvascular endothelial cell proliferation, migration, and adhesion to prevent lung cancer metastasis. CNS Neurosci Ther. 2017;23(12):947–960. doi: 10.1111/cns.12764
  91. Sakaguchi T, Suzuki S, Higashi H, et al. Expression of tight junction protein claudin-5 in tumor vessels and sinusoidal endothelium in patients with hepatocellular carcinoma. J Surg Res. 2008;147(1):123–131. doi: 10.1016/j.jss.2007.07.013
  92. Brinch M, Hatt L, Singh R, et al. Identification of circulating fetal cell markers by microarray analysis. Prenat Diagn. 2012;32(8):742–751. doi: 10.1002/pd.3894
  93. Zhang C, Guo C, Li Y, et al. Identification of claudin-6 as a molecular biomarker in pan-cancer through multiple omics integrative analysis. Front Cell Dev Biol. 2021;9:726656. doi: 10.3389/fcell.2021.726656
  94. Reinhard K, Rengstl B, Oehm P, et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science. 2020;367(6476):446–453. doi: 10.1126/science.aay5967
  95. Stadler C, Bähr-Mahmud H, Plum L, et al. Characterization of the first-in-class T-cell-engaging bispecific single-chain antibody for targeted immunotherapy of solid tumors expressing the oncofetal protein claudin 6. Oncoimmunology. 2016;5(3):e1091555. doi: 10.1080/2162402X.2015.1091555
  96. Simon AG, Lyu SI, Laible M, et al. The tight junction protein claudin 6 is a potential target for patient-individualized treatment in esophageal and gastric adenocarcinoma and is associated with poor prognosis. J Transl Med. 2023;21(1):552. doi: 10.1186/s12967-023-04433-8
  97. Zavala-Zendejas V, Torres-Martinez A, Salas-Morales B, et al. Claudin-6, 7, or 9 overexpression in the human gastric adenocarcinoma cell line AGS increases its invasiveness, migration, and proliferation rate. Cancer Invest. 2011;29(1):1–11. doi: 10.3109/07357907.2010.512594
  98. Yu S, Zhang Y, Li Q, et al. CLDN6 promotes tumor progression through the YAP1-snail1 axis in gastric cancer. Cell Death Dis. 2019;10(12):949. doi: 10.1038/s41419-019-2168-y
  99. Huang L, Zhao C, Sun K, et al. Downregulation of CLDN6 inhibits cell proliferation, migration, and invasion via regulating EGFR/AKT/mTOR signalling pathway in hepatocellular carcinoma. Cell Biochem Funct. 2020;38(5):541–548. doi: 10.1002/cbf.3489
  100. Jia H, Chai X, Li S, et al. Identification of claudin-2,-6,-11 and-14 as prognostic markers in human breast carcinoma. Int J Clin Exp Pathol. 2019;12(6):2195.
  101. Kohmoto T, Masuda K, Shoda K, et al. Claudin-6 is a single prognostic marker and functions as a tumor-promoting gene in a subgroup of intestinal type gastric cancer. Gastric Cancer. 2020;23:403–417. doi: 10.1007/s10120-019-01014-x
  102. Gao F, Li M, Xiang R, et al. Expression of CLDN6 in tissues of gastric cancer patients: Association with clinical pathology and prognosis. Oncol Lett. 2019;17(5):4621–4625. doi: 10.3892/ol.2019.10129
  103. Lu YZ, Li Y, Zhang T, Han S. Claudin-6 is down-regulated in gastric cancer and its potential pathway. Cancer Biomarkers. 2020;28(3):329–340. doi: 10.3233/CBM-201554
  104. Ren Y, Wu Q, Liu Y, et al. Gene silencing of claudin-6 enhances cell proliferation and migration accompanied with increased MMP-2 activity via p38 MAPK signaling pathway in human breast epithelium cell line HBL-100. Mol Med Rep. 2013;8(5):1505–1510. doi: 10.3892/mmr.2013.1675
  105. Ding L, Lu Z, Foreman O, et al. Inflammation and disruption of the mucosal architecture in claudin-7–deficient mice. Gastroenterology. 2012;142(2):305–315.
  106. Xing T, Camacho Salazar R, Chen YH. Animal models for studying epithelial barriers in neonatal necrotizing enterocolitis, inflammatory bowel disease and colorectal cancer. Tissue Barriers. 2017;5(4):e1356901. doi: 10.1080/21688370.2017.1356901
  107. Xiao Y, Lian H, Zhong X, et al. Matrix metalloproteinase 7 contributes to intestinal barrier dysfunction by degrading tight junction protein Claudin-7. Front Immunol. 2022;13:1020902. doi: 10.3389/fimmu.2022.1020902
  108. Xing T, Benderman L, Sabu S, et al. Tight Junction Protein Claudin-7 Is Essential for Intestinal Epithelial Stem Cell Self-Renewal and Differentiation. Cell Mol Gastroenterol Hepatol. 2020;9(4):641–659. doi: 10.1016/j.jcmgh.2019.12.005
  109. Bernardi M, Logullo A, Pasini F, et al. Prognostic significance of CD24 and claudin-7 immunoexpression in ductal invasive breast cancer. Oncol Rep. 2012;27(1):28–38. doi: 10.3892/or.2011.1477
  110. Alikanoglu A, Gunduz S, Demirpence O, et al. Expression pattern and prognostic significance of claudin 1, 4 and 7 in pancreatic cancer. Asian Pac J Cancer Prev. 2015;16(10):4387–4392. doi: 10.7314/apjcp.2015.16.10.4387
  111. Dahiya N, Becker K, Wood W et l. Claudin-7 is frequently overexpressed in ovarian cancer and promotes invasion. PLoS One. 2011;6(7):e22119. doi: 10.1371/journal.pone.0022119
  112. Xu C, Ding Y, Wang K, et al. Claudin-7 deficiency promotes stemness properties in colorectal cancer through Sox9-mediated Wnt/β-catenin signalling. J Transl Med. 2021;19:1–15. doi: 10.1186/s12967-021-02983-3
  113. Lu Z, Ding L, Hong H, et al. Claudin-7 inhibits human lung cancer cell migration and invasion through ERK/MAPK signaling pathway. Exp Cell Res. 2011;317(13):1935–1946. doi: 10.1016/j.yexcr.2011.05.019
  114. Suligoj T, Vigsnæs L, Abbeele P, et al. Effects of Human Milk Oligosaccharides on the Adult Gut Microbiota and Barrier Function. Nutrients. 2020;12(9). doi: 10.3390/nu12092808
  115. Zhang Y, Zheng A, Lu H, et al. The expression and prognostic significance of claudin-8 and androgen receptor in breast cancer. Onco Targets Ther. Published online 2020:3437–3448. doi: 10.2147/OTT.S242406
  116. Smith P, Choksi Y, Markham N, et al. Colon epithelial cell TGFβ signaling modulates the expression of tight junction proteins and barrier function in mice. Am J Physiol Gastrointest Liver Physiol. 2021;320(6):G936–G957. doi: 10.1152/ajpgi.00053.2021
  117. Okamoto E, Matsuda S, Yoshino Y, et al. Regulation of Paracellular Fluxes of Amino Acids by Claudin-8 in Normal Mouse Intestinal MCE301 Cells. Nutrients. 2023;15(6). doi: 10.3390/nu15061346
  118. Ashikari D, Takayama K, Obinata D, et al. CLDN8, an androgen-regulated gene, promotes prostate cancer cell proliferation and migration. Cancer Sci. 2017;108(7):1386–1393. doi: 10.1111/cas.13269
  119. Sutinen P, Malinen M, Heikkinen S, Palvimo J. SUMOylation modulates the transcriptional activity of androgen receptor in a target gene and pathway selective manner. Nucleic Acids Res. 2014;42(13):8310–8319. doi: 10.1093/nar/gku543
  120. Meng J, Mostaghel E, Vakar-Lopez F, et al. Testosterone regulates tight junction proteins and influences prostatic autoimmune responses. Horm Cancer. 2011;2(3):145–156. doi: 10.1007/s12672-010-0063-1
  121. Cheng B, Rong A, Zhou Q, Li W. CLDN8 promotes colorectal cancer cell proliferation, migration, and invasion by activating MAPK/ERK signaling. Cancer Manag Res. 2019;11:3741–3751. doi: 10.2147/CMAR.S189558
  122. Gröne J, Weber B, Staub E, et al. Differential expression of genes encoding tight junction proteins in colorectal cancer: frequent dysregulation of claudin-1, -8 and -12. Int J Colorectal Dis. 2007;22(6):651–659. doi: 10.1007/s00384-006-0197-3
  123. Cherradi S, Martineau P, Gongora C, Del Rio M. Claudin gene expression profiles and clinical value in colorectal tumors classified according to their molecular subtype. Cancer Manag Res. 2019;11:1337–1348. doi: 10.2147/CMAR.S188192
  124. Endo Y, Sugimoto K, Kobayashi M, et al. Claudin-9 is a novel prognostic biomarker for endometrial cancer. Int J Oncol. 2022;61(5):1–11. doi: 10.3892/ijo.2022.5425
  125. Zhuang X, Martin T, Ruge F, et al. Expression of Claudin-9 (CLDN9) in Breast Cancer, the Clinical Significance in Connection with Its Subcoat Anchorage Proteins ZO-1 and ZO-3 and Impact on Drug Resistance. Biomedicines. 2023;11(12). doi: 10.3390/biomedicines11123136
  126. Davidson B, Doutel D, Holth A, Nymoen D. Claudin-10 is a new candidate prognostic marker in metastatic high-grade serous carcinoma. Virchows Arch. 2023;482(6):975–982. doi: 10.1007/s00428-023-03541-6
  127. Sun L, Feng L, Cui J. Increased expression of claudin-17 promotes a malignant phenotype in hepatocyte via Tyk2/Stat3 signaling and is associated with poor prognosis in patients with hepatocellular carcinoma. Diagn Pathol. 2018;13:1–10. doi: 10.1186/s13000-018-0749-1
  128. Yang P, Zhang M, Liu X, Pu H. MicroRNA-421 promotes the proliferation and metastasis of gastric cancer cells by targeting claudin-11. Exp Ther Med. 2017;14(3):2625–2632. doi: 10.3892/etm.2017.4798
  129. Tian X, He Y, Han Z, et al. The Cytoplasmic Expression Of CLDN12 Predicts An Unfavorable Prognosis And Promotes Proliferation And Migration Of Osteosarcoma. Cancer Manag Res. 2019;11:9339–9351. doi: 10.2147/CMAR.S229441
  130. Zhang X, Wang X, Wang A, et al. CLDN10 promotes a malignant phenotype of osteosarcoma cells via JAK1/Stat1 signaling. J Cell Commun Signal. 2019;13:395–405. doi: 10.1007/s12079-019-00509-7
  131. Shu Y, Zhang W, Hou Q, et al. Prognostic significance of frequent CLDN18-ARHGAP26/6 fusion in gastric signet-ring cell cancer. Nat Commun. 2018;9(1):2447.
  132. Ungureanu B, Lungulescu C, Pirici D, et al. Clinicopathologic relevance of Claudin 18.2 expression in gastric cancer: a meta-analysis. Front Oncol. 2021;11:643872. doi: 10.3389/fonc.2021.643872
  133. Li W, Jeng Y, Yang C. Claudin-18 as a marker for identifying the stomach and pancreatobiliary tract as the primary sites of metastatic adenocarcinoma. Am J Surg Pathol. 2020;44(12):1643–1648. doi: 10.1097/PAS.0000000000001583
  134. Luo J, Chimge N, Zhou B, et al. CLDN18. 1 attenuates malignancy and related signaling pathways of lung adenocarcinoma in vivo and in vitro. Int J cancer. 2018;143(12):3169–3180. doi: 10.1002/ijc.31734
  135. Kiyokawa T, Hoang L, Pesci A, et al. Claudin-18 as a promising surrogate marker for endocervical gastric-type carcinoma. Am J Surg Pathol. 2022;46(5):628–636. doi: 10.1097/PAS.0000000000001847
  136. Primeaux M, Liu X, Gowrikumar S, et al. Claudin-1 interacts with EPHA2 to promote cancer stemness and chemoresistance in colorectal cancer. Cancer Lett. 2023;579:216479. doi: 10.1016/j.canlet.2023.216479
  137. Gowrikumar S, Primeaux M, Pravoverov K, et al. A claudin-based molecular signature identifies high-risk, chemoresistant colorectal cancer patients. Cells. 2021;10(9):2211. doi: 10.3390/cells10092211
  138. Zhao Z, Li J, Jiang Y, et al. CLDN1 increases drug resistance of non-small cell lung cancer by activating autophagy via up-regulation of ULK1 phosphorylation. Med Sci Monit Int Med J Exp Clin Res. 2017;23:2906. doi: 10.12659/msm.904177
  139. Akizuki R, Maruhashi R, Eguchi H, et al. Decrease in paracellular permeability and chemosensitivity to doxorubicin by claudin-1 in spheroid culture models of human lung adenocarcinoma A549 cells. Biochim Biophys Acta (BBA)-Molecular Cell Res. 2018;1865(5):769–780. doi: 10.1016/j.bbamcr.2018.03.001
  140. Hoggard J, Fan J, Lu Z, et al. Claudin-7 increases chemosensitivity to cisplatin through the upregulation of caspase pathway in human NCI-H 522 lung cancer cells. Cancer Sci. 2013;104(5):611–618. doi: 10.1111/cas.12135
  141. Yang M, Li Y, Ruan Y, et al. CLDN6 enhances chemoresistance to ADM via AF-6/ERKs pathway in TNBC cell line MDAMB231. Mol Cell Biochem. 2018;443:169–180. doi: 10.1007/s11010-017-3221-8
  142. Li J. Targeting claudins in cancer: diagnosis, prognosis and therapy. Am J Cancer Res. 2021;11(7):3406.
  143. Sahin U, Türeci Ö, Manikhas G, et al. FAST: a randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18. 2-positive gastric and gastro-oesophageal adenocarcinoma. Ann Oncol. 2021;32(5):609–619. doi: 10.1016/j.annonc.2021.02.005
  144. Romero D. Zolbetuximab moves into the SPOTLIGHT. Nat Rev Clin Oncol. 2023;20(6):354. doi: 10.1038/s41571-023-00773-y
  145. Haanen J, Mackensen A, Koenecke C, et al. Abstract CT002: BNT211: a phase I trial to evaluate safety and efficacy of CLDN6 CAR-T cells and CARVac-mediated in vivo expansion in patients with CLDN6-positive advanced solid tumors. Cancer Res. 2022;82(12_Supplement):CT002–CT002. doi: 10.1158/1538-7445.AM2022-CT002
  146. Torres JB, Knight JC, Mosley MJ, et al. Imaging of Claudin-4 in Pancreatic Ductal Adenocarcinoma Using a Radiolabelled Anti-Claudin-4 Monoclonal Antibody. Mol imaging Biol. 2018;20(2):292–299. doi: 10.1007/s11307-017-1112-8
  147. Kuwada M, Chihara Y, Luo Y, et al. Pro-chemotherapeutic effects of antibody against extracellular domain of claudin-4 in bladder cancer. Cancer Lett. 2015;369(1):212–221. doi: 10.1016/j.canlet.2015.08.019
  148. Rabinsky E, Joshi B, Pant A, et al. Overexpressed claudin-1 can be visualized endoscopically in colonic adenomas in vivo. Cell Mol Gastroenterol Hepatol. 2016;2(2):222–237. doi: 10.1016/j.jcmgh.2015.12.001

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Expression of claudins in various neoplasms
Download (68KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».