Vessel visualization and inhibition of tumor growth after injection of nanosystems based on magnetic nanoparticles modified by serum albumin with free radical approach

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Nanosystems based on magnetic nanoparticles (MNPs) of iron oxides coated with human serum albumin (HSA) have a set of unique characteristics that make their use promising in the diagnosis and treatment of tumors.

AIM: To investigate, using in vitro and in vivo models, the possibilities of using the systems we developed based on MNPs magnetite, modified by HSA using the free radical method, for contrasting tumors and slowing their growth.

MATERIALS AND METHODS: The stability and integrity of the albumin coating formed on synthesized nanoparticles as a result of protein adsorption and fixation of adsorbed albumin molecules on nanoparticles due to modification of albumin by the action of a hydroxyl radical formed in a Fenton-like reaction was controlled by a change in the apparent optical density by 450 nm with the addition of immunoglobulin G. After in vitro confirmation of the contrasting properties and possible consequences of the contact of MNPs and nanosystems with blood by agglutination test, nanosystems containing MNPs and HSA were injected intraarterially into tumors implanted in rats at a dose of 20–60 μg per animal and the contrasting properties were studied in vivo using radiography and computed tomography. The effect of nanosystems on the tumor was assessed by the tumor growth index (TGI) and by the results of a pathomorphological study.

RESULTS: To obtain nanosystems, joint incubation of MNPs and HSA was carried out for 24 hours in the presence of hydrogen peroxide, then subjected to magnetic separation. The stability and integrity of the protein coatings were confirmed with the addition of immunoglobulin G. In vitro studies have shown that the resulting nanosystem preparation in an aqueous medium with a MNPs concentration of 200 μg/ml does not lead to agglutination of blood cells and has a pronounced contrast. Vascular contrast in vivo, recorded 30 minutes after intraarterial administration, persisted for 14 days of follow-up. The tolerability study did not reveal any adverse side effects. With the introduction of nanosystems, a significant inhibition of tumor growth was noted compared with the control groups (p ≤0.05). Thus, tumors without the introduction of nanosystems reached a volume of 95,726.9±38,040.3 mm3 during the observation period — the TGI was 11±4.5. In the groups of rats treated with nanosystems at a dose of 20 micrograms of MNPs, tumors grew to 49,801±6011.2 mm3 (TGI 4.7±0.5), at a dose of 40 μg of MNPs — to 54,670.2±17 983.4 mm3 (IPO 5.5±1.4), at a dose of 60 μg of MNPs — to 43,342.5±14,637.2 mm3 (TGI 4.5±1.3).

CONCLUSION: The steady contrast of tumor vessels with the introduction of nanosystems based on MNPs and HSA and their cytotoxic effect on the tumor is shown, which gives reason to consider the nanosystems developed by us promising for tumor theranostics.

About the authors

Anna V. Bychkova

Emanuel Institute of Biochemical Physics of Russian Academy of Sciences

Author for correspondence.
Email: anna.v.bychkova@gmail.com
ORCID iD: 0000-0001-6367-0923
SPIN-code: 2180-2705

Cand. Sci. (Chemistry)

Russian Federation, Moscow

Marina N. Yakunina

N.N. Blokhin National Medical Research Center of Oncology

Email: irsovet@yandex.ru
ORCID iD: 0000-0002-5278-1641

Dr. Sci. (Vet.)

Russian Federation, Moscow

Mariia V. Lopukhova

Emanuel Institute of Biochemical Physics of Russian Academy of Sciences

Email: mahlop1@yandex.ru
ORCID iD: 0009-0002-4701-0815
SPIN-code: 9921-9170
Russian Federation, Moscow

Vadim S. Pokrovsky

Emanuel Institute of Biochemical Physics of Russian Academy of Sciences; N.N. Blokhin National Medical Research Center of Oncology; RUDN University

Email: pokrovskiy-vs@rudn.ru
ORCID iD: 0000-0003-4006-9320
SPIN-code: 4552-1226

MD, Dr. Sci. (Med.)

Russian Federation, Moscow; Moscow; Moscow

Mariia S. Veresova

Emanuel Institute of Biochemical Physics of Russian Academy of Sciences

Email: veresovamariiaa@gmail.com
ORCID iD: 0009-0004-4069-6011
Russian Federation, Moscow

Marina E. Sukhanova

RUDN University

Email: sukhanova-me@rudn.ru

Cand. Sci. (Biology)

Russian Federation, Moscow

Valery V. Kasparov

Emanuel Institute of Biochemical Physics of Russian Academy of Sciences

Email: vvkas@yandex.ru
ORCID iD: 0000-0002-0438-2451
SPIN-code: 5283-7920

Cand. Sci. (Chemistry)

Russian Federation, Moscow

Derenik S. Khachatryan

Emanuel Institute of Biochemical Physics of Russian Academy of Sciences

Email: derenik-s@yandex.ru
ORCID iD: 0000-0002-5490-5652
SPIN-code: 3221-3444

Cand. Sci. (Chemistry)

Russian Federation, Moscow

References

  1. Majid A, Ahmed W, Patil–Sen Y, et al. Synthesis and Characterisation of Magnetic Nanoparticles in Medicine. Micro and Nanomanufacturing. 2018;2:413–442. doi: 10.1007/978–3–319–67132–1_14
  2. Kandasamy G, Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm. 2015;496(2):191–218. doi: 10.1016/j.ijpharm.2015.10.058
  3. Wang X, Liang Y, Fei S, et al. Formulation and pharmacokinetics of HSA–core and PLGA–shell nanoparticles for delivering gemcitabine. AAPS PharmSciTech. 2018;19:812–819. doi: 10.1208/s12249–017–0888–9
  4. Saravanakumar G, Kim J, Kim WJ. Reactive-oxygen-species-responsive drug delivery systems: promises and challenges. Advanced Science. 2017;4(1):1600124. doi: 10.1002/advs.201600124
  5. Szwed M, Marczak A. Application of Nanoparticles for Magnetic Hyperthermia for Cancer Treatment—The Current State of Knowledge. Cancers. 2024;16(6):1156. doi: 10.3390/cancers16061156
  6. Israel LL, Galstyan A, Holler E, Ljubimova JY. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. J Control Release. 2020;320:45–62. doi: 10.1016/j.jconrel.2020.01.009
  7. Thangudu S, Huang EY, Su CH. Safe magnetic resonance imaging on biocompatible nanoformulations. Biomater Sci. 2022;10(18):5032–5053. doi: 10.1039/d2bm00692h
  8. Chubarov AS. Serum Albumin for Magnetic Nanoparticles Coating. Magnetochemistry. 2022;8(2):13. doi: 10.3390/magnetochemistry8020013
  9. Sleep D. Albumin and its application in drug delivery. Expert Opin Drug Deliv. 2015;12(5):793–812. doi: 10.1517/17425247.2015.993313
  10. Aires A, Ocampo SM, Cabrera D, et al. BSA–coated magnetic nanoparticles for improved therapeutic properties. J Mater Chem B. 2015;3(30):6239–6247. doi: 10.1039/c5tb00833f
  11. Thao LQ, Byeon HJ, Lee C, et al. Doxorubicin–Bound Albumin Nanoparticles Containing a TRAIL Protein for Targeted Treatment of Colon Cancer. Pharm Res. 2016;33:615–626. doi: 10.1007/s11095–015–1814–z
  12. Yamasaki K, Chuang VT, Maruyama T, Otagiri M. Albumin–drug interaction and its clinical implication. Biochim Biophys Acta. 2013;1830(12):5435–5443. doi: 10.1016/j.bbagen.2013.05.005
  13. Malinovskaya J, Salami R, Valikhov M, et al. Supermagnetic Human Serum Albumin (HSA) Nanoparticles and PLGA-Based Doxorubicin Nanoformulation: A Duet for Selective Nanotherapy. Inter J Mol Sci. 2023;24(1):627. doi: 10.3390/ijms24010627
  14. Thangudu S, Kaur N, Korupalli C, et al. (2021). Recent advances in near infrared light responsive multi-functional nanostructures for phototheranostic applications. Biomater. Sci, 2021;9(16):5472–5483. doi: 10.1039/D1BM00631B
  15. Vismara E, Bongio C, Coletti A, et al. Albumin and Hyaluronic Acid–Coated Superparamagnetic Iron Oxide Nanoparticles Loaded with Paclitaxel for Biomedical Applications. Molecules. 2017;22(7):1030. doi: 10.3390/molecules22071030
  16. Tzameret A, Ketter–Katz H, Edelshtain V, et al. In vivo MRI assessment of bioactive magnetic iron oxide/human serum albumin nanoparticle delivery into the posterior segment of the eye in a rat model of retinal degeneration. J Nanobiotechnology. 2019;17(1):1–11. doi: 10.1186/s12951–018–0438–y
  17. Baki A, Remmo A, Löwa N, et al. Albumin–Coated Single–Core Iron Oxide Nanoparticles for Enhanced Molecular Magnetic Imaging (MRI/MPI). Int J Mol Sci. 2021;22(12):6235. doi: 10.3390/ijms22126235
  18. Tao C, Zheng Q, An L, et al. T1–Weight Magnetic Resonance Imaging Performances of Iron Oxide Nanoparticles Modified with a Natural Protein Macromolecule and an Artificial Macromolecule. Nanomaterials. 2019;9(2):170. doi: 10.3390/nano9020170
  19. Ostroverkhov P, Semkina A, Naumenko V, et al. HSA—Coated Magnetic Nanoparticles for MRI–Guided Photodynamic Cancer Therapy. Pharmaceutics. 2018;10(4):284. doi: 10.3390/pharmaceutics10040284
  20. Chen Q, Liu Z. Albumin Carriers for Cancer Theranostics: A Conventional Platform with New Promise. Adv Mater. 2016;28(47):10557–10566. doi: 10.1002/adma.201600038
  21. Prusakov VE, Maksimov YV, Nishchev KN, et al. Hybrid Biodegradable Nanocomposites Based on a Biopolyester Matrix and Magnetic Iron Oxide Nanoparticles: Structural, Magnetic, and Electronic Characteristics. Russ J Phys Chem B. 2018;12:158–164. EDN: YMWMVP doi: 10.1134/S1990793118010116
  22. Bychkova AV, Rosenfeld MA, Leonova VB, et al. Free–radical cross–linking of serum albumin molecules on the surface of magnetite nanoparticles in aqueous dispersion. Colloid J. 2013;75:7–13. doi: 10.1134/S1061933X13010031
  23. Bychkova AV, Lopukhova MV, Wasserman LA, et al. Interaction between immunoglobulin G and peroxidase–like iron oxide nanoparticles: Physicochemical and structural features of the protein. Biochim Biophys Acta Proteins Proteom. 2020;1868(1):140300. doi: 10.1016/j.bbapap.2019.140300
  24. Bychkova AV, Lopukhova MV, Wasserman LA, et al. The influence of pH and ionic strength on the interactions between human serum albumin and magnetic iron oxide nanoparticles. Int J Biol Macromol. 2022;194:654–665. doi: 10.1016/j.ijbiomac.2021.11.110
  25. Pronkin PG, Bychkova AV, Sorokina ON, et al. Study of protein coatings on magnetic nanoparticles by the method of spectral and fluorescent probes. High Energy Chem. 2013; 47(5):268–269. EDN: QYNEZH doi: 10.1134/S0018143913050111
  26. Bychkova AV, Pronkin PG, Sorokina ON, et al. Study of protein coatings cross–linked via the free–radical mechanism on magnetic nanoparticles by the method of spectral and fluorescent probes. Colloid J. 2014;76(4):387–394. doi: 10.1134/S1061933X14040036
  27. Cukalevski R, Ferreira SA, Dunning CJ, et al. IgG and fibrinogen driven nanoparticle aggregation. Nano Res. 2015;8: 2733–2743. doi: 10.1007/s12274–015–0780–4
  28. Bychkova AV, Lopukhova MV, Wasserman LA, et al. Interaction between immunoglobulin G and peroxidase–like iron oxide nanoparticles: Physicochemical and structural features of the protein. Biochim Biophys Acta Proteins Proteom. 2020;1868(1):140300. EDN: IYAFOL doi: 10.1016/j.bbapap.2019.140300
  29. Lavnikova GA. Histological Quantification Method Therapeutic Tumor Lesions: Methodical recommendations. Moscow: 1979. 13 p. (In Russ.)
  30. Pacak CA, Hammer PE, MacKay AA, et al. Superparamagnetic iron oxide nanoparticles function as a long–term, multi–modal imaging label for non–invasive tracking of implanted progenitor cells. PLoS One. 2014;9(9):e108695. doi: 10.1371/journal.pone.0108695
  31. Dong H, Yang D, Hu Y, Song X. Recent advances in smart nanoplatforms for tumor non-interventional embolization therapy. J Nanobiotechnology. 2022;20(1):337. doi: 10.1186/s12951-022-01548-w
  32. Zhang C, Liu X, Jin S, et al. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol Cancer. 2022;21(1):47. doi: 10.1186/s12943-022-01530-y
  33. Gao L, Fan K, Yan X. Iron Oxide Nanozyme: A Multifunctional Enzyme Mimetic for Biomedical Applications. Theranostics. 2017;7(13):3207–3227. doi: 10.7150/thno.19738
  34. Voinov MA, Sosa Pagan JO, Morrison E, et al. Surface–mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J Am Chem Soc. 2011;133(1):35–41. doi: 10.1021/ja104683w
  35. Kim SE, Zhang L, Ma K, et al. Ultrasmall nanoparticles induce ferroptosis in nutrient–deprived cancer cells and suppress tumour growth. Nat Nanotechnol. 2016;11(11):977–985. doi: 10.1038/nnano.2016.164
  36. Gorobets MG, Bychkova AV, Abdullina MI, Motyakin MV. Peroxidase–Like Activity of Magnetic Nanoparticles in the Presence of Blood Proteins. Dokl Biochem Biophys 2023;512(1):270–273. doi: 10.1134/S1607672923700394
  37. Bychkova AV, Yakunina MN, Lopukhova MV, et al. Albumin–Functionalized Iron Oxide Nanoparticles for Theranostics: Engineering and Long–Term In Situ Imaging. Pharmaceutics. 2022;14(12):2771. doi: 10.3390/pharmaceutics14122771
  38. Thangudu S, Kaur N, Korupalli C, Zheng H. Recent advances in near infrared light responsive multi–functional nanostructures for phototheranostic applications. Biomater Sci. 2021;9(16):5472–5483. doi: 10.1039/d1bm00631b
  39. Cai L, Du Y, Xiong H, et al. Application of nanotechnology in the treatment of hepatocellular carcinoma. Front. Pharmacol. 2024;15(1):1438819. doi: 10.3389/fphar.2024.1438819

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Hybrid nanosystems based on iron oxide nanoparticles (Fe3O4) for biomedical applications.

Download (128KB)
3. Fig. 2. Fenton-like reaction on magnetic nanoparticles surface in the absence (1) and in the presence (2) of human serum albumin: ЧСА — human serum albumin.

Download (216KB)
4. Fig. 3. Dependence of relative optical density on the ratio of magnetic nanoparticles (МНЧ) and human serum albumin (ЧСА) concentrations in the reaction systems after immunoglobulin G addition. Incubation time of the systems before addition of immunoglobulin G: 1 — 30 minutes, 2 — 90 minutes, 3 — 24 hours.

Download (90KB)
5. Fig. 4. CT imaging of the tumor node from two different angles (transverse and sagittal planes) in the rat femoral muscle after 30 minutes (1, 2) and 14 days (3, 4) after the injection of nanosystems based on magnetic nanoparticles and human serum albumin (corresponding to 60 μg magnetic nanoparticles).

Download (319KB)
6. Fig. 5. X-ray imaging after 30 minutes after injection of nanosystems corresponding to 40 μg of magnetic nanoparticles (1) and 14 days after injection of nanosystems corresponding to 20 μg (3), 40 μg (3) and 60 μg (4) of magnetic nanoparticles.

Download (138KB)
7. Fig. 6. Microscopic imaging of whole blood and magnetic nanoparticles 1:1 (magnification ×400).

Download (235KB)
8. Fig. 7. The effect of nanosystems injected in an amount of 60 μg by magnetic nanoparticles on the tumor growth index (TGI), characterized by the size at the beginning of treatment Vav=9.5–10.5 cm3 (1, 2) and Vav=6.0–6.5 cm3 (3, 4).

Download (101KB)
9. Fig. 8. The effect of nanosystems injected in various quantities: group 1 — 0 μg, group 2 — 20 μg, group 3 — 40 μg, group 4 — 60 μg (by magnetic nanoparticles) on the time of doubling the volume of the tumor. The numbers above the columns represent the coefficient of treatment effectiveness in comparison with the control group where tumor growth was observed (K).

Download (102KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».