Cytotoxicity of curcumin-loaded nanoparticles based on amphiphilic poly-N-vinylpyrrolidone derivatives in 2D and 3D in vitro models of human ovarian adenocarcinoma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Nanocarriers based on biocompatible polymers are a promising delivery tool for biologically active substances and drugs, in particular antitumor agents. Curcumin, a polyphenol, is known to possess pleiotropic therapeutic effects, including antitumor activity. The antitumor potential of curcumin has been shown in various tumor types, including ovarian adenocarcinoma. However, its lipophilic properties and very low bioavailability limits its use. Incorporating curcumin into nanocarriers enhances its delivery options and expands its potential as an antitumor agent.

AIM: To produce curcumin-loaded polymeric nanoparticles based on amphiphilic poly-N-vinylpyrrolidone derivatives and its copolymers with acrylic acid, explore their accumulation in the tumor cells; evaluate in vitro cytotoxicity in 2D (monolayer cell culture) and 3D (tumor spheroids) models of human ovarian adenocarcinoma.

MATERIALS AND METHODS: The polymers of the amphiphilic poly-N-vinylpyrrolidone derivatives and its copolymers with acrylic acid were obtained using radical polymerization. Emulsion method was used to obtain polymeric nanoparticles. Accumulation of nanoparticles in tumor cells was assessed using flow cytometry (for monolayer culture) or fluorimetric analysis (for spheroids). Cytotoxicity was studied in 2D and 3D models obtained of the human ovarian adenocarcinoma cell line OVCAR-3 using 3-4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay).

RESULTS: The effective accumulation of curcumin-loaded polymeric nanoparticles in both monolayer culture cells and tumor spheroids was demonstrated. Curcumin-loaded nanoparticles exhibited high-level cytotoxicity in the 2D model of human ovarian adenocarcinoma cells OVCAR-3 (IC50 up to 137±9 μg/mL) and a moderate, although significant cytotoxic effect in a 3D in vitro model. Meanwhile, nanoparticles not loaded with curcumin did not show any cytotoxic activity regardless of their composition or of the additional modification, i.e. with the use of maleimide functional groups.

CONCLUSION: These data can provide a foundation for further studies to assess the safety and in vivo antitumor activity of curcumin-loaded nanoparticles based on amphiphilic poly-N-vinylpyrrolidone derivatives.

About the authors

Anastasia M. Gileva

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS; Mendeleev Russian University of Chemical Technology

Author for correspondence.
Email: sumina.anastasia@mail.ru
ORCID iD: 0000-0001-8220-0580
SPIN-code: 3401-5241

junior researcher

Russian Federation, Moscow; Moscow

Daria I. Kulikova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS; Mendeleev Russian University of Chemical Technology

Email: dkulikovaaa@mail.ru
Russian Federation, Moscow; Moscow

Ekaterina V. Kukovyakina

Mendeleev Russian University of Chemical Technology

Email: kev0700@yandex.ru
ORCID iD: 0009-0008-2918-185X
SPIN-code: 9172-4087
Russian Federation, Moscow

Anne V. Yagolovich

Lomonosov Moscow State University

Email: anne-gor2002@yandex.ru
ORCID iD: 0000-0003-3145-3726
SPIN-code: 2076-1814

Cand. Sci. (Biology)

Russian Federation, Moscow

Kirill S. Kushnerev

Mendeleev Russian University of Chemical Technology

Email: firstavenue@mail.ru
ORCID iD: 0000-0003-2866-9796
SPIN-code: 4968-0941
Russian Federation, Moscow

Andrey N. Kuskov

Mendeleev Russian University of Chemical Technology

Email: kuskov.a.n@muctr.ru
ORCID iD: 0000-0001-8140-2754
SPIN-code: 6115-8494
ResearcherId: R-7314-2016

Dr. Sci. (Chemistry), Professor 

Russian Federation, Moscow

Elena A. Markvicheva

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: lemarkv@hotmail.com
ORCID iD: 0000-0001-6652-3267

Dr. Sci. (Chemistry)

Russian Federation, Moscow

References

  1. Alqosaibi AI. Nanocarriers for anticancer drugs: Challenges and perspectives. Saudi J Biol Scie. 2022;29(6):103298. doi: 10.1016/j.sjbs.2022.103298
  2. Beach MA, Nayanathara U, Gao Y, et al. Polymeric Nanoparticles for Drug Delivery. Chem Rev. 2024;124(9):5505–5616. doi: 10.1021/acs.chemrev.3c00705
  3. Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv Drug Deliv Rev. 2020;156:80–118. doi: 10.1016/j.addr.2020.09.009
  4. Torchilin VP. Micellar Nanocarriers: Pharmaceutical Perspectives. Pharm Res. 2006;24(1):1–16. doi: 10.1007/s11095-006-9132-0
  5. Hassankhani Rad A, Asiaee F, Jafari S, et l. Poly(ethylene glycol)-poly(ε-caprolactone)-based micelles for solubilization and tumor-targeted delivery of silibinin. Bioimpacts. 2019;10(2):87–95. doi: 10.34172/bi.2020.11
  6. Luo Y, Hong Y, Shen L, et al. Multifunctional Role of Polyvinylpyrrolidone in Pharmaceutical Formulations. AAPS Pharm Sci Tech. 2021;22(1):34. doi: 10.1208/s12249-020-01909-4
  7. Tsatsakis A, Stratidakis AK, Goryachaya AV, et al. In vitro blood compatibility and in vitro cytotoxicity of amphiphilic poly-N-vinylpyrrolidone nanoparticles. Food Chem Toxicol. 2019;127: 42–52. doi: 10.1016/j.fct.2019.02.041
  8. Berdiaki A, Perisynaki E, Stratidakis A, et al. Assessment of Amphiphilic Poly- N -vinylpyrrolidone Nanoparticles’ Biocompatibility with Endothelial Cells in Vitro and Delivery of an Anti-Inflammatory Drug. Mol Pharm. 2020;17(11):4212–4225. doi: 10.1021/acs.molpharmaceut.0c00667
  9. Yagolovich A, Kuskov A, Kulikov P, et al. Assessment of the effects of amphiphilic poly (N-vinylpyrrolidone) nanoparticles loaded with bortezomib on glioblastoma cell lines and zebrafish embryos. Biomed Rep. 2024;20(3):37. doi: 10.3892/br.2024.1725
  10. Kostyuk VA. Biological activity of curcumin and perspectives for its pharmacological use. J GrSMU. 2022;20(2):144–151. doi: 10.25298/2221-8785-2022-20-2-144–151
  11. Mohamadian M, Bahrami A, Moradi Binabaj M, et al. Molecular Targets of Curcumin and Its Therapeutic Potential for Ovarian Cancer. Nutrition and Cancer. 2022;74(8):2713–2730. doi: 10.1080/01635581.2022.2049321
  12. Liu X, Qi M, Li X, et al. Curcumin: a natural organic component that plays a multi-faceted role in ovarian cancer. J Ovarian Res. 2023;16(1):47. doi: 10.1186/s13048-023-01120-6
  13. Górnicka J, Mika M, Wróblewska O, et al. Methods to Improve the Solubility of Curcumin from Turmeric. Life. 2023;13(1):207. doi: 10.3390/life13010207
  14. Akasov R, Zaytseva-Zotova D, Burov S, et al. Formation of multicellular tumor spheroids induced by cyclic RGD-peptides and use for anticancer drug testing in vitro. Int J Pharm. 2016;506(1-2): 148–157. doi: 10.1016/j.ijpharm.2016.04.005
  15. Tawfik M, Hadlak S, Götze C, et al. Live In-Vivo Neuroimaging Reveals the Transport of Lipophilic Cargo Through the Blood-Retina Barrier with Modified Amphiphilic Poly-N-Vinylpyrrolidone Nanoparticles. J biomed nanotechnol. 2021;17(5):846–858. doi: 10.1166/jbn.2021.3073
  16. Kulikov PP, Kuskov AN, Goryachaya AV, et al. Amphiphilic poly-n-vinyl-2-pyrrolidone: Synthesis, properties, nanoparticles. Polym Sci Ser D. 2017;10(3):263–268. doi: 10.1134/S199542121703008X
  17. Han S, Kwon S, Kim K. Challenges of applying multicellular tumor spheroids in preclinical phase. Cancer Cell Int. 2021;21(1):152. doi: 10.1186/s12935-021-01853-8
  18. Borodina T, Gileva A, Akasov R, et al. Fabrication and evaluation of nanocontainers for lipophilic anticancer drug delivery in 3D in vitro model. J Biomed Mater Res. 2021;109(4):527–537. doi: 10.1002/jbm.b.34721
  19. Gileva A, Trushina D, Yagolovich A, et al. Doxorubicin-Loaded Polyelectrolyte Multilayer Capsules Modified with Antitumor DR5-Specific TRAIL Variant for Targeted Drug Delivery to Tumor Cells. Nanomaterials. 2023;13(5):902. doi: 10.3390/nano13050902

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Synthesis of amphiphilic derivatives of poly-N-vinylpyrrolidone for subsequent production of modified polymeric nanoparticles with curcumin.

Download (312KB)
3. Fig. 2. In vitro release profiles of curcumin from the Amph-PVP-Cur and Amph-PVP-AK-Mal-Cur nanoparticles. Free curcumin was used as a control.

Download (146KB)
4. Fig. 3. Accumulation efficiency of the polymeric nanoparticles loaded with curcumin in monolayer culture (2D in vitro model) and tumor spheroids (3D in vitro model) from human ovarian adenocarcinoma OVCAR-3 cells Flow cytometry (2D in vitro model) and fluorimetry (3D in vitro model). **** p <0.001.

Download (177KB)
5. Fig. 4. Cytotoxicity of the polymeric nanoparticles in monolayer culture (2D in vitro model) and in tumor spheroids (3D in vitro model) from human ovarian adenocarcinoma OVCAR-3 cells after incubation for 24 and 48 h. MTT-test.

Download (272KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».