To the issue of neuro-immuno-endocrine system theory

Cover Page

Cite item

Full Text

Abstract

The review presents the history of evolving views about interrelations between the immune, nervous, and endocrine systems, A number of arguments justify the concept suggesting that they are components of a single regulatory system, since their structures are tightly integrated into each other, and they use similar biologically active substances as signaling molecules. At the same time, distinct molecules, depending on the cell of origin, may be classified as neurotransmitters, hormones, or cytokines. Receptors for cytokines were found on peripheral neurons and vagal nerve endings, e.g., IL-4 regulates synaptic transmission. The ability of immune cells to produce hormones and neuropeptides has been recently proven. Catecholamines may originate from the cells of immune system. Hypothalamic neurosecretory cells express IL-1, and astrocytic glial cells may express interferon. They always act together, in functional regulation by complementing or replacing each other, having a common coordination center. E.g., the anterior lobe of pituitary gland, by secreting growth hormone, may affect synthesis and secretion of thymulin by epithelial thymic cells. Thus, the hypothalamic-pituitary-thymic axis is formed. On this basis, neuroimmunoendocrinology, a new scientific discipline, has emerged. The disorder of a distinct subsystem leads to significant changes in its other compartments. There is not a single type of pathology that would not involve all three components of the whole system. The unity of all components of the system is most clearly observed in stress, traumatic shock, and cytokine storm. Cross-usage of drugs for the therapy of diseases affecting either of the three systems is of particular interest. For example, usage of immunotropic drugs has found applications in the treatment of psychiatric disorders. Pharmacological effects on macrophages are currently implemented in the treatment of endocrine disorders. Thus, sufficient evidence has been accumulated to consider the immune, nervous and endocrine systems an integrated system of physiological regulation which is presumably based on transmission and processing of information.

About the authors

Valeriy A. Chereshnev

Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences

Email: secretar@iip.uran.ru

PhD, MD (Medicine), Professor, Full Member, Russian Academy of Sciences, Director for Research

Russian Federation, Yekaterinburg

Boris G. Yushkov

Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences; Institute of Medical Cellular Technologies

Author for correspondence.
Email: b.yushkov@iip.uran.ru

PhD, MD (Medicine), Professor, Corresponding Member, Russian Academy of Sciences, Chief Researcher, Laboratory of Immunophysiology and Immunopharmacology, Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences; Head, Central Experimental Laboratory of Biotechnology, Institute of Medical Cellular Technologies

Russian Federation, Yekaterinburg; Yekaterinburg

References

  1. Абрамов В.В. Взаимодействие иммунной и нервной систем. Новосибирск: Наука, 1988. 165 с. [Abramov V.V. Interaction of the immune and nervous systems]. Novosibirsk: Nauka, 1988. 165 p.
  2. Абрамов В.В. Интеграция иммунной и нервной систем. Новосибирск: Наука, 1991. 166 с. [Abramov V.V. Integration of the immune and nervous systems]. Novosibirsk: Nauka, 1991. 166 p.
  3. Акмаев И.Г. Нейроиммуноэндокринные взаимодействия: экспериментальные и клинические аспекты // Сахарный диабет, 2002. Т. 5, № 1. C. 2-10. [Akmaev I.G. Neuroimmunoendocrine interactions: experimental and clinical aspects. Sakharnyy diabet = Diabetes mellitus, 2002, Vol. 5, no. 1, pp. 2-10. (In Russ.)]
  4. Александровский Ю.А., Ахапкин Р.В., Гурина О.И., Куликова Т.Ю. Перспективы применения иммуномодуляторов при лечении пограничных психических расстройств // Фарматека. Спецвыпуск: Психиатрия, 2008. № 1S. C. 22-25. [Aleksandrovsky Yu.A., Akhapkin R.V., Gurina O.I., Kulikova T.Yu. Prospects for the use of immunomodulators in the treatment of borderline mental disorders. Farmateka. Spetsvypusk: Psikhiatriya = Pharmateka. Special Issue: Psychiatry, 2008, no. 1S, pp. 22-25. (In Russ.)]
  5. Александровский Ю.А., Чехонин В.П. Клиническая иммунология пограничных психических расстройств. М.: Медицина, 2005. 310 с. [Aleksandrovsky Yu.A., Chekhnin V.P. Clinical immunology of borderline mental disorders]. Moscow: Meditsina, 2005. 310 p.
  6. Ашмарин И.П. Загадки и откровения биохимии памяти / Под ред. Е.М. Крепса. Л.: Изд-во Ленингр. ун-та, 1975. 160 с. [Ashmarin I.P. Riddles and revelations of the biochemistry of memory . Ed. E.M. Kreps]. Leningrad: Leningrad University Publishing House, 1975. 160 p.
  7. Ашмарин И.П., Бородкин Ю.С., Бундзен П.В. Механизмы памяти. Л.: Наука, 1987. 431 с. [Ashmarin I.P., Borodkin Yu.S., Bundzen P.V. Memory mechanisms]. Leningrad: Nauka, 1987. 431 p.
  8. Бабаева А.Г. Иммунологические механизмы регуляции восстановительных процессов. М.: Медицина, 1972. 160 с. [Babaeva A.G. Immunological mechanisms of regulation of recovery processes]. Moscow: Meditsina, 1972. 160 p.
  9. Богомолец А.А. К вопросу о микроскопическом строении надпочечников в связи с их отделительной деятельностью. Одесса: «Экон.» тип., 1905. 26 с. [Bogomolets A.A. On the microscopic structure of the adrenal glands in relation to their secretory activity]. Odessa: Ekon, 1905. 26 p.
  10. Булавинцева Т.С., Юшков Б.Г., Данилова И.Г., Абидов М.Т. Влияние макрофагов на инсулинсинтезирующую систему в норме и при аллоксановом диабете // Медицинская иммунология, 2023. Т. 25, № 2. С. 287-300. [Bulavintseva T.S., Yushkov B.G., Danilova I.G., Abidov M.T. Influence of macrophages on the insulin-synthesizing system under normal conditions and in alloxan diabetes. Meditsinskaya immunologiya = Medical Immunology (Russia), 2023, Vol. 25, no. 2, pp. 287-300. (In Russ.)] doi: 10.15789/10.15789/1563-0625-IOM-2534.
  11. Буркова С.А., Кутырев В.В. Морфофункциональная оценка состояния клеток APUD-системы биомодели при характеристике противочумного вакцинного процесса // Журнал микробиологии, эпидемиологии и иммунобиологии, 2013. № 4. С. 49-55. [Burkova S.A., Kutyrev V.V. Morphofunctional assessment of the state of cells of the APUD system of a biomodel in characterizing the anti-plague vaccine process. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2013, no. 4, pp. 49-55. (In Russ.)]
  12. Гамалея Н.Б., Наумова Т.А., Хотовицкий А.В., Кузьмина Т.И., Гамалея А.А. Исследование влияния тактивина на процессы внутриклеточной передачи сигнала в ответ на стимуляцию опиоидных, дофаминовых и серотониновых рецепторов на лимфоцитах периферической крови у здоровых и больных героиновой наркоманией // Вопросы наркологии, 2002. № 3. C. 66-75. [Gamaleya N.B., Naumova T.A., Khotovitsky A.V., Kuzmina T.I., Gamaleya A.A. Study of the effect of tactivin on the processes of intracellular signal transmission in response to stimulation of opioid, dopamine and serotonin receptors on peripheral blood lymphocytes in healthy people and patients with heroin addiction. Voprosy narkologii = Questions of Narcology, 2002, no. 3, pp. 66-75. (In Russ.)]
  13. Дятлова А.С., Новикова Н.С., Юшков Б.Г., Корнева Е.А., Черешнев В.А. Гематоэнцефалический барьер в нейроиммунных взаимодействиях и развитии патологических процессов // Вестник Российской академии наук, 2022. Т. 92, № 10. С. 950-960. [Dyatlova A.S., Novikova N.S., Yushkov B.G., Korneva E.A., Chereshnev V.A. The blood-brain barrier in neuroimmune interactions and the development of pathological processes. Vestnik Rossiyskoy akademii nauk = Annals of the Russian Academy of Sciences, 2022, Vol. 92, no. 10, pp. 950-960. (In Russ.)]
  14. Здор В.В., Гельдер Б.И., Маркелова Е.В. Роль мастоцитов в патогенезе аутоиммунного воспаления щитовидной железы // Тихоокеанский медицинский журнал, 2016. Т. 61, № 3. С. 12-15. [Zdor V.V., Gelder B.I., Markelova E.V. The role of mast cells in the pathogenesis of autoimmune inflammation of the thyroid gland. Tikhookeanskiy meditsinskiy zhurnal = Pacific Medical Journal, 2016, Vol. 61, no. 3, pp. 12-15. (In Russ.)]
  15. Здор В.В., Маркелова Е.В., Фадеев В.В., Тихонов Я.Н. Морфофункциональные изменения в железах внутренней секреции и их взаимосвязь с клетками врожденного иммунитета – мастоцитами при экспериментальном тиреотоксикозе // Российский иммунологический журнал, 2018. T. 12, № 4. C. 545-552. [Zdor V.V., Markelova E.V., Fadeev V.V., Tikhonov Ya.N. Morphofunctional changes in the endocrine glands and their relationship with innate immune cells – mast cells in experimental thyrotoxicosis. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2018, Vol. 12, no. 4, pp. 545-552. (In Russ.)] doi: 10.31857/S102872210002373-5.
  16. Зимина И.В., Белова О.В., Торховская Т.И., Арион В.Я., Новоселецкая А.В., Киселева Н.М., Крючкова А.В., Иноземцев А.Н., Сергиенко В.И. Взаимосвязь тимуса и тимических пептидов с нервной и эндокринной системами // Иммунология, аллергология, инфектология, 2015. № 1. C. 18-29. [Zimina I.V., Belova O.V., Torkhovskaya T.I., Arion V.Ya., Novoseletskaya A.V., Kiseleva N.M., Kryuchkova A.V., Inozemtsev A.N., Sergienko V.I. The relationship of the thymus and thymic peptides with the nervous and endocrine systems]. Immunologiya, allergologiya, infektologiya = Immunology, Allergology, Infectology, 2015, no. 1, pp. 18-29. (In Russ.)]
  17. Кветной И.М. APUD-система (вопросы структурно-функциональной организации, гистогенеза, патологии) // Архив патологии, 1981. Т. 43, № 1. С. 81-87. [Kvetnoy I.M. APUD system (issues of structural and functional organization, histogenesis, pathology). Arkhiv patologii = Arkhiv Patologii, 1981, Vol. 43, no. 1, pp. 81-87. (In Russ.)]
  18. Кветной И.М., Ингель И.Э. Гормональная функция неэндокринных клеток: роль нового биологического феномена в регуляции гомеостаза // Бюллетень экспериментальной биологии и медицины, 2000. № 11. С. 483-487. [Kvetnoy I.M., Ingel I.E. Hormonal function of non-endocrine cells: the role of a new biological phenomenon in the regulation of homeostasis. Byulleten eksperimentalnoy biologii i meditsiny = Bulletin of Experimental Biology and Medicine, 2000, no. 11, pp. 483-487. (In Russ.)]
  19. Колосков Ф.А., Мирошников А.Б., Мешталь А.В. Механизмы влияния тренировок с ограничением кровотока на гипертрофию рабочих мышц: обзор предметного поля // Российский журнал спортивной науки: медицина, физиология, тренировка, 2023. Т. 2, № 2. С. 20-26. [Koloskov F.A., Miroshnikov A.B., Meshtal A.V. Mechanisms of the effect of training with blood flow restriction on hypertrophy of working muscles: a review of the subject field. Rossiyskiy zhurnal sportivnoy nauki: meditsina, fiziologiya, trenirovka = Russian Journal of Sports Science: Medicine, Physiology, Training, 2023, Vol. 2, no. 2, pp. 20-26. (In Russ.)]
  20. Корнева Е.А. Пути взаимодействия нервной и иммунной систем: история и современность, клинческое применение // Медицинская иммунология, 2020. Т.22, № 3. С. 405-418. [Korneva E.A. Pathways of interaction between the nervous and immune systems: history and modernity, clinical application. Meditsinskaya immunologiya = Medical Immunology (Russia), 2020, Vol. 22, no. 3, pp. 405-418. (In Russ.)] doi.org/10.15789/1563-0625-PON-1974.
  21. Кривопалов С.А., Юшков Б.Г. Влияние Г-КСФ на поведение и характер аудиогенного припадка крыс линии Крушинского–Молодкиной // Журнал высшей нервной деятельности им. И.П. Павлова, 2018. Т. 68, №. 5. С. 637-645. [Krivopalov S.A., Yushkov B.G. Effect of G-CSF on the behavior and nature of the audiogenic seizure in Krushinsky-Molodkina rats. Zhurnal vysshey nervnoy deyatelnosti im. I.P. Pavlova = Journal of Higher Nervous Activity named after IP Pavlov, 2018, Vol. 68, no. 5, pp. 637-645. (In Russ.)]
  22. Кубарко А.И., Семенович А.А., Переверзев В.А. Нормальная физиология: учебник. В 2 ч. Ч. 1 / Под ред. А.И. Кубарко. Минск: Вышэйшая школа, 2013. 542 c. [Kubarko A.I., Semenovich A.A., Pereverzev V.A. Normal physiology: textbook. In 2 parts. Part 1. Ed. A.I. Kubarko]. Minsk: Vysheyshaya shkola, 2013. 542 p.
  23. Куликова Т.Ю., Гурина О.И. Применение иммуномодулятора «галавит» у больных с невротическими и соматоформными расстройствами // Психиатрия и психофармакотерапия, 2004. Т. 6. № 2. С. 88-90. [Kulikova T.Yu., Gurina O.I. Application of the immunomodulator “Galavit” in patients with neurotic and somatoform disorders. Psikhiatriya i psikhofarmakoterapiya = Psychiatry and Psychopharmacotherapy, 2004, Vol. 6, no.2, pp. 88-90. (In Russ.)]
  24. Кулябко А.А., Метальников С.И. О кардиотоксической сыворотке: (Опыты на изолированном сердце). Предварительное сообщение // Известия Императорской Академии Наук, 1902. Т. 17, № 1. С. 101-107. [Kulyabko A.A., Metalnikov S.I. On Cardiotoxic Serum: (Experiments on an Isolated Heart). Preliminary Report. Izvestiya Imperatorskoy Akademii Nauk = Proceedings of the Imperial Academy of Sciences, 1902, Vol. 17, no. 1, pp. 101-107. (In Russ.)]
  25. Миняйлова Н.Н., Ровда Ю.И., Зинчук С.Ф., Климанова А.Е., Строева В.П., Черных Н.С. Аспекты вилочковой железы (тимуса) детского возраста (часть V). Гормональные и морфологические взаимосвязи тимуса с нейроэндокринной системой и в частности с соматотропным гомоном и инсулиноподобным фактором роста // Мать и дитя, 2022, № 1. C. 11-20. [Minyailova N.N., Rovda Yu.I., Zinchuk S.F., Klimanova A.E., Stroeva V.P., Chernykh N.S. Aspects of the thymus gland in childhood (Part V). Hormonal and morphological relationships of the thymus with the neuroendocrine system and in particular with the somatotropic hormone and insulin-like growth factor. Mat i ditya = Mother and Child, 2022, no. 1, pp. 11-20. (In Russ.)]
  26. Невидимова Т.И., Суслов Н.И. Психотропный эффект тимогена // Бюллетень экспериментальной биологии и медицины, 1995. № 2. С. 199-201. [Nevidimova T.I., Suslov N.I. Psychotropic effect of thymogen. Byulleten eksperimentalnoy biologii i meditsiny = Bulletin of Experimental Biology and Medicine, 1995, no. 2, pp. 199-201. (In Russ.)]
  27. Новиков П.Д. Клиническая иммунология. Витебск: ВГМУ, 2006. 580 с. [Novikov P.D. Clinical Immunology]. Vitebsk: VSMU, 2006. 580 p.
  28. Новоселецкая А.В., Киселева Н.М., Иноземцев А.Н., Белова О.В., Зимина И.В., Арион В.Я. Тактивин и тимулин ускоряют процесс обучения и памяти после тимэктомии // Здоровье и образование в XXI веке, 2013. Т. 15, № 1-4. С. 51-52. [Novoseletskaya A.V., Kiseleva N.M., Inozemtsev A.N., Belova O.V., Zimina I.V., Arion V.Ya. Taktivin and thymulin accelerate the process of learning and memory after thymectomy. Zdorovye i obrazovaniye v XXI veke = Health and Education Millenium, 2013, Vol. 15, no. 1-4, pp. 51-52. (In Russ.)]
  29. Палько О.Л., Александровский Ю.А., Чехонин В.П., Гурина О.И. Терапия больных с невротическими расстройствами с использованием иммунокорректоров миелопептидной природы. В: Александровский Ю.А., Чехонин В.П. Клиническая иммунология пограничных психических расстройств. М.: ГЭОТАР-Медиа, 2005. С. 144-173. [Palko O.L., Aleksandrovsky Yu.A., Chekhonin V.P., Gurina O.I. Therapy of patients with neurotic disorders using immunocorrectors of myelopeptide nature. In: Aleksandrovsky Yu.A., Chekhonin V.P. Clinical Immunology of Borderline Mental Disorders]. Moscow: GEOTAR-Media, 2005, pp. 144-173.
  30. Пальцев М.А., Кветной И.М. Руководство по нейроиммуноэндокринологии. М.: Медицина, 2006. 384 с. [Paltsev M.A., Kvetnoy I.M. Handbook of neuroimmunoendocrinology]. Moscow: Meditsina, 2006. 384 p.
  31. Пивоваров А.В. Взаимосвязь инсулиноподобного фактора роста – 1 и показателей углеводного обмена у больных с артериальной гипертензией и сахарным диабетом 2 типа // Научный результат. Медицина и фармация, 2017. Т. 3, № 1. С. 8-14. [Pyvovarov A.V. Relationship between insulin-like growth factor-1 and indicators of the carbohydrate metabolism in patients with comorbidity of arterial hypertension and type 2 diabetes mellitus. Nauchnyy rezultat. Meditsina i farmatsiya = Research Result. Medicine and Pharmacy, 2017, Vol. 3, no. 1, pp. 8-14. (In Russ.)]
  32. Райцина С.С. Травма семенника и аутоиммунитет. М.: Медицина, 1970. 184 с. [Raitsyna S.S. Testicular trauma and autoimmunity]. Moscow: Meditsina, 1970. 184 p.
  33. Саидова К.М. Эндокринные функции сердца: значение и функции натрийуретических пептидов // Актуальные исследования. № 7. С. 13-21. [Saidova K.M. Endocrine functions of the heart: the meaning and functions of natriuretic peptides. Aktualnyye issledovaniya = Current Research, no. 7, pp. 13-21. (In Russ.)]
  34. Торховская Т.И., Белова О.В., Зимина И.В., Крючкова А.В., Москвина С.Н., Быстрова О.В., Арион В.Я., Сергиенко В.И. Нейропептиды, цитокины и тимические пептиды как эффекторы взаимодействия тимуса и нейроэндокринной системы // Вестник РАМН, 2015. Т. 70, № 6. С. 727-733. [Torkhovskaya T.I., Belova O.V., Zimina I.V., Kryuchkova A.V., Moskvina S.N., Bystrova O.V., Arion V.Ya., Sergienko V.I. Neuropeptides, cytokines and thymic peptides as effectors of the interaction of the thymus and neuroendocrine system. Vestnik RAMN = Bulletin of the Russian Academy of Medical Sciences, 2015, Vol. 70, no. 6, pp. 727-733. (In Russ.)]
  35. Цориев Т.Т., Белая Ж.Е., Рожинская Л.Я. Роль миокинов в межтканевом взаимодействии и ркгуляции обмена: обзор литературы // Остеопороз и остеопатиии, 2016, № 1. C. 28-34 [Tsoriev T.T., Belaya Zh.E., Rozhinskaya L.Ya. The role of myokines in intertissue interactions and regulation of metabolism: a literature review. Osteoporoz i osteopatiii = Osteoporosis and Osteopathy, 2016, no. 1, pp. 28-34. (In Russ.)]
  36. Черешнев В.А., Юшков Б.Г., Климин В.Г., Лебедева Е.В. Иммунофизиология. Екатеринбург: УрО РАН, 2002. 259 с. [Chereshnev V.A., Yushkov B.G., Klimin V.G., Lebedeva E.V. Immunophysiology]. Yekaterinburg: Ural Branch of the Russian Academy of Sciences, 2002. 259 p.
  37. Шмидт Т.Е., Жученко Т.Д. Механизмы действия иммуномодулирующих препаратов при рассеянном склерозе // Нейроимунология, 2003. Т. 1, № 2. С. 161-162. [Schmidt T.E., Zhuchenko T.D. Mechanisms of action of immunomodulatory drugs in multiple sclerosis. Neyroimmunologiya = Neyroimmunologiya, 2003, Vol. 1, no. 2, pp. 161-162. (In Russ.)]
  38. Штарк М.Б., Береговой Н.А., Старостина М.В., Сорокина Н.С. Базовые механизмы терапии психических расстройств сверхмалыми дозами антител к мозгоспецифическому белку S-100 // Социальная и клиническая психиатрия, 2000. № S1. С. 374-376. [Stark M.B., Beregovoy N.A., Starostina M.V., Sorokina N.S. Basic mechanisms of therapy of mental disorders with ultra-low doses of antibodies to the brain-specific protein S-100. Sotsialnaya i klinicheskaya psikhiatriya = Social and Clinical Psychiatry, 2000, no. S1, pp. 374-376. (In Russ.)]
  39. Aboalola D., Han V.K.M. Different Effects of insulin-like growth factor-1 and insulin-like growth factor-2 on myogenic differentiation of human mesenchymal stem cells. Stem Cells Int., 2017, Vol. 2017, 8286248. doi: 10.1155/2017/8286248.
  40. Andersson K., Fuxe K., Eneroth P., Isaksson O., Nyberg F., Roos P. Rat growth hormone and hypothalamic catecholamine nerve terminal systems. Evidence for rapid and discrete reductions in dopamine and noradrenaline levels and turnover in the median eminence of the hypophysectomized male rat. Eur. J. Pharmacol., 1983, Vol. 95, no. 3-4, pp. 271-275.
  41. Arzt E., Stalla G.K. Cytokines: autocrine and paracrine roles in the anterior pituitary. Neuroimmunomodulation, 1996, Vol. 3, no. 1, pp. 28-34.
  42. Aubry J.M., Turnbull A.V., Pozzoli G., Rivier C., Vale W. Endotoxin decreases corticotropin-releasing factor receptor 1 messenger ribonucleic acid levels in the rat pituitary. Endocrinology, 1997, Vol. 138, no. 4, pp. 1621-1626.
  43. Balmasova I.P., Kvetnoi I.M., Smorodinov A.V. Endocrine function of APUD cells of immunocompetent organs in some forms of immune response. Bull. Exp. Biol. Med., 1983, Vol. 96, pp. 1283-1285.
  44. Bán E.G., Brassai A., Vizi E.S. The role of the endogenous neurotransmitters associated with neuropathic pain and in the opioid crisis: The innate pain-relieving system. Brain Res. Bull., 2020, Vol. 155, pp. 129-136.
  45. Ban E., Gagnerault M.C., Jammes H., Postel-Vinay M.C., Haour F., Dardenne M. Specific binding sites forgrowth hormone in cultured mouse thymic epithelial cells. Life Sci., 1991, Vol. 48, no. 22, pp. 2141-2148.
  46. Ban E., Haour F., Lenstra R. Brain interleukin 1 gene expression induced by peripheral lipopolysaccharide administration. Cytokine, 1992, Vol. 4, no. 1, pp. 48-54.
  47. Ban E.M., Sarliève L.L., Haour F.G. Interleukin-1 binding sites on astrocytes. Neuroscience, 1993, Vol. 52, no. 3, pp. 725-733.
  48. Ban E., Milon G., Prudhomme N., Fillion G., Hour F. Receptors for interleukin-1 (α and β) in mouse brain: mapping and neuronal localization in hippocampus. Neuroscience, 1991, Vol. 43, no. 1, pp. 21-30.
  49. Banks W.A. Viktor Mutt lecture: Peptides can cross the blood-brain barrier. Peptides, 2023, Vol. 169, 171079. doi: 10.1016/j.peptides.2023.171079.
  50. Beishuizen A., Thijs L.G. The immunoneuroendocrine axis in critical illness: beneficial adaptation or neuroendocrine exhaustion? Curr. Opin. Crit. Care, 2004, Vol. 10, no. 6, pp. 461-467.
  51. Bergquist J., Josefsson E., Tarkowski A., Ekman R., Ewing A. Measurements of catecholamine-mediated apoptosis of immunocompetent cells by capillary electrophoresis. Electrophoresis, 1997, Vol. 18, no. 10, pp. 1760-1766.
  52. Bergquist J., Silberring J. Identification of catecholamines in the immune system by electro-spray ionization mass spectrometry. Rapid Commun. Mass Spectrom., 1998, Vol. 12, no. 11, pp. 683-688.
  53. Bergquist J., Tarkowski A., Ekman R., Ewing A. Discovery of endogenous catecholamines in lymphocytes and evidence for catecholamine regulation of lymphocyte function via an autocrine loop. Proc. Natl. Acad. Sci. USA., 1994, Vol. 91, no. 26, pp. 12912-12916.
  54. Besedovsky H.O., del Rey A. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr. Rev., 1996, Vol. 17, no. 1, pp. 64-102.
  55. Besedovsky H.O., Del Rey A. Physiological implications of the immune-neuro-endocrine network. In: Ader R., Felten D.L., Cohen N. (eds.). Psychoneuroimmunology. NY: Academic Press, 1991, pp. 589-608.
  56. Besedovsky H.O., del Rey A., Sorkin E. Neuroendocrine immunoregulation. In: Fabris N., Garaci E., Hadden J., Mitchison N.A. (eds.). Immunoregulation. Springer, Boston, MA. New York, 1983, pp. 315-339.
  57. Bianchi V.E., Locatelli V., Rizzi L. Neurotrophic and Neuroregenerative Effects of GH/IGF1. Int. J. Mol. Sci., 2017, Vol. 18, no. 11, 2441. doi: 10.3390/ijms18112441.
  58. Blalock J.E., Smith E.M. Human leukocyte interferon: structural and biological relatedness to adrenocorticotropic hormone and endorphins. Proc. Natl. Acad. Sci. USA, 1980, Vol. 77, no. 10, pp. 5972-5974.
  59. Blalock J.E. A molecular basis for bidirectional communication between the immune and neuroendocrine systems. Physiol. Rev., 1989, Vol. 69, no. 1, pp. 1-32.
  60. Bouzakri K., Plomgaard P., Berney T., Donath M.Y., Pedersen B.K., Halban P.A. Bimodal effect on pancreatic β-cells of secretory products from normal or insulin-resistant human skeletal muscle. Diabetes. 2011, Vol. 60, no. 4, pp. 1111-1121.
  61. Brioschi S., Wang W.L., Peng V., Wang M., Shchukina I., Greenberg Z.J., Bando J.K., Jaeger N., Czepielewski R.S., Swain A., Mogilenko D.A., Beatty W.L., Bayguinov P., Fitzpatrick J.A.J, Schuettpelz LG, Fronick C.C., Smirnov I., Kipnis J., Shapiro V.S., Wu G.F., Gilfillan S., Cella M., Artyomov M.N., Kleinstein S.H., Colonna M. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science, 2021, Vol., 373, no. 6553, eabf9277. doi: 10.1126/science.abf9277.
  62. Brooks G.A., Osmond A.D., Arevalo J.A., Duong J.J., Curl C.C., Moreno-Santillan D.D., Leija R.G. Lactate as a myokine and exerkine: drivers and signals of physiology and metabolism. J. Appl. Physiol., 2023, Vol. 134, no. 3, pp. 529-548.
  63. Brown O.A., Sosa Y.E., Bolognani F., Goya R.G. Thymulin stimulates prolactin and thyrotropin release in an age-related manner. Mech. Ageing Dev., 1998, Vol. 104, no. 3, pp. 249-262.
  64. Brown O.A., Sosa Y.E., Dardenne M., Pléau J.M., Goya R.G. Studies on the gonadotropin-releasing activity of thymulin: changes with age. J. Gerontol. A Biol. Sci. Med. Sci., 2000, Vol. 55, no. 4, pp. B170-B176.
  65. Brown S.W., Meyers R.T., Brennan K.M., Rumble J.M., Narasimhachari N, Perozzi E.F., Ryan J.J., Stewart J.K., Fischer-Stenger K. Catecholamines in a macrophage cell line. J. Neuroimmunol., 2003, Vol. 135, no. 1-2, pp. 47-55.
  66. Bucala R. MIF rediscovered: cytokine, pituitary hormone, and glucocorticoid-induced regulator of the immune response. FASEB J., 1996, Vol. 10, no. 14, pp. 1607-1613.
  67. Cantacuzene J. Sur les variations quantitatives et qualitatives des globules rouges provoquées chez le lapin par les injections de serum hémolytique. Ann. Inst. Pasteur, 1900, Vol. 14, p. 378.
  68. Caslin H.L., Abebayehu D., Pinette J.A., Ryan J.J. Lactate is a metabolic mediator that shapes immune cell fate and function. Front. Physiol., 2021, Vol. 12, 688485.
  69. Chai Q., He W.Q., Zhou M., Lu H., Fu Z.F. Enhancement of bloodbrain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection. J. Virol., 2014, Vol. 88, no. 9, pp. 4698-4710.
  70. Choudhry H., Harris A.L. Advances in hypoxia-inducible factor biology. Cell Metab., 2018, Vol. 27, no. 2. pp. 281-298.
  71. Cohen S., Berrih S., Dardenne M., Bach J.F. Feedback regulation of the secretion of a thymic hormone (thymulin) by human thymic epithelial cells in culture. Thymus, 1986, Vol. 8, no. 3, pp. 109-119.
  72. Cosentino M., Bombelli R., Ferrari M., Marino F., Rasini E., Maestroni G.J., Conti A., Boveri M., Lecchini S., Frigo G. HPLC-ED measurement of endogenous catecholamines in human immune cells and hematopoietic cell lines. Life Sci., 2000, Vol. 68, no. 3, pp. 283-295.
  73. Cugurra A., Mamuladze T., Rustenhoven J., Dykstra T., Beroshvili G., Greenberg Z.J., Baker W., Papadopoulos Z., Drieu A., Blackburn S., Kanamori M., Brioschi S., Herz J., Schuettpelz L.G., Colonna M., Smirnov I., Kipnis J. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science, 2021, Vol. 373, no. 6553, eabf7844. doi: 10.1126/science.abf7844.
  74. de Bold A.J., Borenstein H.B., Veress A.T., Sonnenberg H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci., 1981, Vol. 28, no. 1, pp. 89-94.
  75. de Bold A.J., Flynn T.G. Cardionatrin I – a novel heart peptide with potent diuretic and natriuretic properties. Life Sci., 1983, Vol. 33, no. 3, pp. 297-302.
  76. de Vincentis S., Vezzani S., Roli L., Simoni M., Santi D., Trenti T. Регулярная интенсивная физическая нагрузка изменяет гормональный статус спортсменок волейбольного спорта // Проблемы эндокринологии, 2016. Т. 62, № 5. С. 37. [de Vincentis S., Vezzani S., Roli L., Simoni M., Santi D., Trenti T. Regular intense physical activity alters the hormonal status of female volleyball athletes. Problemy endokrinologii = Problems of Endocrinology, 2016, Vol. 62, no. 5, p. 37. (In Russ.)]
  77. Dinarello CA. Historical insights into cytokines. Eur. J. Immunol.. 2007, Vol. 37, Suppl. 1, pp. S34-S45.
  78. Ellingsgaard H., Hauselmann I., Schuler B., Habib A.M., Baggio L.L., Meier D.T., Eppler E., Bouzakri K., Wueest S., Muller Y.D., Hansen A.M., Reinecke M., Konrad D., Gassmann M., Reimann F., Halban P.A., Gromada J., Drucker D.J., Gribble F.M., Ehses J.A., Donath M.Y. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat. Med., 2011, Vol. 17, no. 11, pp. 1481-1489.
  79. Erickson M.A., Banks W.A. Neuroimmune axes of the blood-brain barriers and blood-brain interfaces: bases for physiological regulation, disease states, and pharmacological interventions. Pharmacol. Rev., 2018, Vol. 70, no. 2, pp. 278-314.
  80. Farrar W. L., Kilian P. L., Ruff M. R., Hill J. M., Pert, C. B.. Visualization and characterization of interleukin 1 receptors in brain. J. Immunol., 1987, Vol. 139, no. 2, pp. 459-463.
  81. Feyrter F. Uber diffuse endokrine epitheliate Organe. Liepzig Zentr. Inn. Mediz., 1938, Vol. 29, pp. 545-571.
  82. Filiano A.J., Xu Y., Tustison N.J., Marsh R.L., Baker W., Smirnov I., Overall C.C., Gadani S.P., Turner S.D., Weng Z., Peerzade S.N., Chen H., Lee K.S., Scott M.M., Beenhakker M.P., Litvak V., Kipnis J. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature, 2016, Vol. 535, no. 7612, pp. 425-429.
  83. Flierl M.A., Rittirsch D., Nadeau B.A., Chen A.J., Sarma J.V., Zetoune F.S., McGuire S.R., List R.P., Day D.E., Hoesel L.M., Gao H., Van Rooijen N., Huber-Lang M.S., Neubig R.R., Ward P.A. Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature, 2007, Vol. 449, no. 7163, pp. 721-725.
  84. Freeman J.G., Ryan J.J., Shelburne C.P., Bailey D.P., Bouton L.A., Narasimhachari N., Domen J., Simeon N., Couderc F., Stewart J.K. Catecholamines in murine bone marrow derived mast cells. J. Neuroimmunol., 2001, Vol. 119, no. 2, pp. 231-238.
  85. Furrer R., Hawley J.A., Handschin C. The molecular athlete: exercise physiology from mechanisms to medals. Physiol. Rev., 2023, Vol. 103, no. 3, pp. 1693-1787.
  86. García L., Hinojosa L., Domínguez R., Chavira R., Rosas P. Effects of infantile thymectomy on ovarian functions and gonadotrophin-induced ovulation in prepubertal mice: role of thymulin. J. Endocrinol., 2000, Vol. 166, no. 2, pp. 381-387.
  87. Gery I., Waksman B.H. Potentiation of the T-lymphocyte response to mitogens. II. The cellular source of potentiating mediator(s). J. Exp. Med., 1972, Vol. 136, no. 1, pp. 143-155.
  88. Ginhoux F., Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity, 2016, Vol. 44, no. 3, pp. 439-449.
  89. Goff B.L., Roth J.A., Arp L.H., Incefy G.S. Growth hormone treatment stimulates thymulin production in aged dogs. Clin. Exp. Immunol., 1987, Vol. 68, no. 3, pp. 580-587.
  90. Goldfine A.B., Conlin P.R., Halperin F., Koska J., Permana P., Schwenke D., Shoelson S.E., Reaven P.D. A randomised trial of salsalate for insulin resistance and cardiovascular risk factors in persons with abnormal glucose tolerance. Diabetologia, 2013, Vol. 56, no. 4, pp. 714-723.
  91. González-Hernández J.A., Bornstein S.R., Ehrhart-Bornstein M., Geschwend J.E., Adler G., Scherbaum W.A. Macrophages within the human adrenal gland. Cell Tissue Res., 1994, Vol. 278, no. 2, pp. 201-205.
  92. Gopurappilly R., Bhonde R. Can multiple intramuscular injections of mesenchymal stromal cells overcome insulin resistance offering an alternative mode of cell therapy for type 2 diabetes? Med. Hypotheses, 2012, Vol. 78, no. 3, pp. 393-395
  93. Goya R.G., Brown O.A., Pléau J.M., Dardenne M. Thymulin and the neuroendocrine system. Peptides, 2004, Vol. 25, no. 1, pp. 139-142.
  94. Goya R.G., Gagnerault M.C., De Moraes M.C., Savino W., Dardenne M. In vivo effects of growth hormone on thymus function in aging mice. Brain Behav. Immun., 1992, Vol. 6, no. 4, pp. 341-354.
  95. Grabar P. Globulines du sérum sanguin. Paris: Masson, 1947. 136 p.
  96. Hanuscheck N., Thalman C., Domingues M., Schmaul S., Muthuraman M., Hetsch F., Ecker M., Endle H., Oshaghi M., Martino G., Kuhlmann T., Bozek K., van Beers T., Bittner S., von Engelhardt J., Vogt J., Vogelaar C.F., Zipp F. Interleukin-4 receptor signaling modulates neuronal network activity. J. Exp. Med., 2022, Vol. 219, no. 6, e20211887. doi: 10.1084/jem.20211887.
  97. Jacobson L.O., Goldwasser E., Fried W., Plzak L. Role of the kidney in erythropoiesis. Nature, 1957, Vol. 179, no. 4560, pp. 633-634.
  98. Josefsson E., Bergquist J., Ekman R., Tarkowski A. Catecholamines are synthesized by mouse lymphocytes and regulate function of these cells by induction of apoptosis. Immunology, 1996, Vol. 88, no. 1, pp. 140-146.
  99. Kangawa K., Matsuo H. Purification and complete amino acid sequence of α-human atrial natriuretic polypeptide (α-hANP). Biochem. Biophys. Res. Commun., 1984, Vol. 118, no. 1, pp. 131-139.
  100. Kerage D., Sloan E/K., Mattarollo S.R., McCombe P.A. Interaction of neurotransmitters and neurochemicals with lymphocytes. J. Neuroimmunol., 2019, Vol. 15, no. 332, pp. 99-111.
  101. Kiemer A.K., Vollmar A.M. The atrial natriuretic peptide regulates the production of inflammatory mediators in macrophages. Ann. Rheum. Dis., 2001, Vol. 60, Suppl. 3, pp. iii68-iii70.
  102. Klein J.R., Wang H.C. Characterization of a novel set of resident intrathyroidal bone marrow-derived hematopoietic cells: potential for immune-endocrine interactions in thyroid homeostasis. J. Exp. Biol., 2004, Vol. 207, Pt 1, pp. 55-65.
  103. Knudsen J.H., Christensen N.J., Bratholm P. Lymphocyte norepinephrine and epinephrine, but not plasma catecholamines predict lymphocyte cAMP production. Life Sci., 1996, Vol. 59, no. 8, pp. 639-647.
  104. Kosekova G. Paneva R., Sirakov L. Vazopresinŭt kato nevrotransmiter i nevromodulator Vasopressin as a neurotransmitter and neuromodulator. Eksp. Med. Morfol., 1993, Vol. 31, no. 1-2, pp. 35-41. (In Bulgarian)
  105. Koshimizu T.A., Nakamura K., Egashira N., Hiroyama M., Nonoguchi H., Tanoue A. Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol. Rev., 2012, Vol. 92, no. 4, pp. 1813-1864.
  106. Kovács K.J., Elenkov I.J. Differential dependence of ACTH secretion induced by various cytokines on the integrity of the paraventricular nucleus. J. Neuroendocrinol., 1995, Vol. 7, no. 1, pp. 15-23.
  107. Krueger J.M., Walter J., Dinarello C.A., Wolff S.M., Chedid L. Sleep-promoting effects of endogenous pyrogen (interleukin-1). Am. J. Physiol., 1984. Vol. 246, no. 6, pp. R994-R999.
  108. Kwon D. Guardians of the brain: how a special immune system protects our grey matter. Nature, 2022, Vol. 606, no. 7912, pp. 22-24.
  109. Landsteiner, K. Zur Kenntnis der spezifi sch auf Blutkorperchen wirkenden Sera. Zbl . Bakt., 1899, Vol. 25, pp. 546-549.
  110. Lapenna A., De Palma M., Lewis C.E. Perivascular macrophages in health and disease. Nat. Rev. Immunol., 2018, Vol. 18, no. 11, pp. 689-702.
  111. Lau T.T., Wang D.A. Stromal cell-derived factor-1 (SDF-1): homing factor for engineered regenerative medicine. Expert Opin. Biol. Ther., 2011, Vol. 11, no. 2, pp. 189-197.
  112. Laurens C., Bergouignan A., Moro C. Exercise-Released Myokines in the Control of Energy Metabolism. Front. Physiol., 2020, Vol. 11, 91. doi: 10.3389/fphys.2020.00091.
  113. Lauten T.H., Natour T., Case A.J. Innate and adaptive immune system consequences of post-traumatic stress disorder. Auton. Neurosci., 2024, Vol. 252, 103159. doi: 10.1016/j.autneu.2024.103159.
  114. Lewitt M.S., Boyd G.W. Role of the insulin-like growth factor system in neurodegenerative disease. Int. J. Mol. Sci., 2024, Vol. 25, no. 8, 4512. doi: 10.3390/ijms25084512.
  115. Mani S.K, Oyola MG. Progesterone signaling mechanisms in brain and behavior. Front. Endocrinol., 2012, Vol. 3, 7. doi: 10.3389/fendo.2012.00007.
  116. Mattson M.P., Maudsley S., Martin B. BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci., 2004, Vol. 27, no. 10, pp. 589-594.
  117. Metalnikoff S. Études sur la spermatoxine. Ann. Inst. Pasteur, 1900, Vol. 14, pp. 577-589.
  118. Metchnikoff E. Etudes biologiques sur la vieillesse. Ann. Inst. Pasteur, 1899, Vol. 13, pp. 912-931.
  119. Micevych P., Sinchak K. Estradiol regulation of progesterone synthesis in the brain. Mol. Cell. Endocrinol., 2008, Vol. 290, pp. 44-50.
  120. Micevych P.E., Wong A.M., Mittelman-Smith M.A. Estradiol membrane-initiated signaling and female reproduction. Compr. Physiol., 2015, Vol. 5, no. 3, pp. 1211-1222.
  121. Mier J.W., Gallo R.C. Purification and some characteristics of human T-cell growth factor from phytohemagglutinin-stimulated lymphocyte-conditioned media. Proc. Natl. Acad. Sci. USA, 1980, Vol. 77, no. 10, pp. 6134-6138.
  122. Mine M., Tramontano D., Chin W.W., Ingbar S.H. Interleukin-1 stimulates thyroid cell growth and increases the concentration of the c-myc proto-oncogene mRNA in thyroid follicular cells in culture. Endocrinology, 1987, Vol. 120, no. 3, pp. 1212-1214.
  123. Mitani F., Mukai K., Miyamoto H., Suematsu M, Ishimura Y. Development of functional zonation in the rat adrenal cortex. Endocrinology, 1999, Vol. 140, no. 7, pp. 3342-3353.
  124. Montesinos M.D.M., Pellizas C.G. Thyroid Hormone Action on Innate Immunity. Front. Endocrinol., 2019, Vol. 10, 350. doi: 10.3389/fendo.2019.00350.
  125. Natalicchio A., Marrano N., Biondi G., Spagnuolo R., Labarbuta R., Porreca I., Cignarelli A., Bugliani M., Marchetti P., Perrini S., Laviola L., Giorgino F. The myokine irisin is released in response to saturated fatty acids and promotes pancreatic β-cell survival and insulin secretion. Diabetes, 2017, Vol. 66, no. 11, pp. 2849-2856.
  126. Nishijima T., Piriz J., Duflot S., Fernandez A.M., Gaitan G., Gomez-Pinedo U., Verdugo J.M., Leroy F., Soya H., Nuñez A., Torres-Aleman I. Neuronal activity drives localized blood-brain-barrier transport of serum insulin-like growth factor-I into the CNS. Neuron, 2010, Vol. 67, no. 5, pp. 834-846.
  127. Nishiyama N. Thymectomy-induced deterioration of learning and memory. Cell. Mol. Biol., 2001, Vol. 47, no. 1, pp. 161-165.
  128. Nussdorfer G.G., Mazzocchi G. Immune-endocrine interactions in the mammalian adrenal gland: facts and hypotheses. Int. Rev. Cytol., 1998, Vol. 183, pp. 143-184.
  129. Pasciuto E., Burton O.T., Roca C.P., Lagou V., Rajan W.D., Theys T., Mancuso R., Tito R.Y., Kouser L., Callaerts-Vegh Z., de la Fuente A.G., Prezzemolo T., Mascali L.G., Brajic A., Whyte C.E., Yshii L., Martinez-Muriana A., Naughton M., Young A., Moudra A., Lemaitre P., Poovathingal S., Raes J., De Strooper B., Fitzgerald D.C., Dooley J., Liston A.. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell, 2020, Vol. 182, no. 3, pp. 625-640.e24.
  130. Pearse A.G. The diffuse neuroendocrine system and the apud concept: related» endocrine» peptides in brain, intestine, pituitary, placenta, and anuran cutaneous glands. Med. Biol., 1977, Vol. 55, no. 3, pp. 115-125.
  131. Pedersen B.K., Akerstrom T.C., Nielsen A.R. Fischer C.P. Role of Myokines in Exercise and Metabolism. J. Appl. Physiol., 2007, Vol. 103, pp. 1093-1098.
  132. Pedersen B.K., Febbraio, M.A. Muscle as an Endocrine Organ: Focus on Muscle-Derived Interleukin-6. Physiol. Rev., 2008, Vol. 88, no. 4, pp. 1379-1406.
  133. Pérez A.R., Morrot A., Carvalho V.F., de Meis J., Savino W. Role of hormonal circuitry upon T cell development in chagas disease: possible implications on T cell dysfunctions. Front. Endocrinol., 2018, Vol. 9, 334. doi: 10.3389/fendo.2018.00334.
  134. Perrotta C., Buldorini M., Assi E., Cazzato D., De Palma C., Clementi E., Cervia D. The thyroid hormone triiodothyronine controls macrophage maturation and functions: protective role during inflammation. Am. J. Pathol., 2014, Vol. 184, no. 1, pp. 230-247.
  135. Pruett S.B. Quantitative aspects of stress-induced immunomodulation. J. Int. Immunopharmacol., 2001, Vol. 1, no. 3, pp. 507-520.
  136. Reggiani P.C., Martines E.V., Camihort G.A., Poch B., Goya R.G., Console G.M. Role of thymulin on the somatotropic axis in vivo. Life Sci., 2012, Vol. 91, no. 5-6, pp. 166-171.
  137. Rehman A., Pacher P., Haskó G. Role of macrophages in the endocrine system. Trends Endocrinol. Metab., 2021, Vol. 32, no. 4, pp. 238-256.
  138. Reinhardt R.R., Bondy C.A. Insulin-like growth factors cross the blood-brain barrier. Endocrinology, 1994, Vol. 135, no. 5, pp. 1753-1761.
  139. Ring R.H. The central vasopressinergic system: examining the opportunities for psychiatric drug development. Curr. Pharm. Des., 2005, Vol. 11, no. 2, pp. 205-225.
  140. Rudolph L.M., Cornil C.A., Mittelman-Smith M.A., Rainville J.R., Remage-Healey L., Sinchak K., Micevych P.E. Actions of steroids: new neurotransmitters. J. Neurosci., 2016, Vol. 36, no. 45, pp. 11449-11458.
  141. Rutti S., Dusaulcy R., Hansen J.S., Howald C., Dermitzakis E.T., Pedersen B.K., Pinget M., Plomgaard P., Bouzakri K. Angiogenin and osteoprotegerin are type II muscle specific myokines protecting pancreatic beta-cells against proinflammatory cytokines. Sci. Rep., 2018, Vol. 8, no. 1, 10072. doi: 10.1038/s41598-018-28117-2.
  142. Saito H., Nishiyama N., Zhang Y., Abe Y. Learning disorders in thymectomized mice: a new screening model for cognitive enhancer. J. Behav. Brain Res., 1997, Vol. 83, no. 1-2, pp. 63-69.
  143. Sanguinetti E., Guzzardi M.A., Panetta D., Tripodi M., De Sena V., Quaglierini M., Burchielli S., Salvadori P.A., Iozzo P. Combined effect of fatty diet and cognitive decline on brain metabolism, food intake, body weight, and counteraction by intranasal insulin therapy in 3×Tg mice. Front. Cell. Neurosci., 2019, Vol. 13, 188. doi: 10.3389/fncel.2019.00188.
  144. Sarlis N.J., Stephanou A., Knight R.A., Lightman S.L., Chowdrey H.S. Effects of glucocorticoids and chronic inflammatory stress upon anterior pituitary interleukin-6 mRNA expression in the rat. Br. J. Rheumatol., 1993, Vol. 32, no. 8, pp. 653-657.
  145. Savino W., Mendes-da-Cruz D.A., Lepletier A., Dardenne M. Hormonal control of T-cell development in health and disease. Nat. Rev. Endocrinol., 2016, Vol. 12, no. 2, pp. 77-89.
  146. Scharrer E. Secretory cells in the midbrain of the European minnow (Phoxinus laevis L.). J. Comp. Neurol., 1932, Vol. 55, pp. 573-576.
  147. Scharrer E. Untersuchungen über das Zwischenhirn der Fische. Z. Vergl. Physiol., 1928, no. 7, pp. 1-38.
  148. Seidler D.G., Mohamed N.A., Bocian C., Stadtmann A., Hermann S., Schäfers K., Schäfers M., Iozzo R.V., Zarbock A., Götte M. The role for decorin in delayed-type hypersensitivity. J. Immunol., 2011, Vol. 187, no. 11, pp. 6108-6119.
  149. Shirai Y. On the transplantation of the rat sarcoma in adult heterogenous animals. Jap. Med. World, 1921, no. 1, pp. 14-15.
  150. Sinchak K., Wagner E.J. Estradiol signaling in the regulation of reproduction and energy balance. Front. Neuroendocrinol., 2012, Vol. 33, pp. 342-363.
  151. Skarlis С., Nezos A., Clio P. Mavragani C.P., Michael Koutsilieris M. The role of insulin growth factors in autoimmune diseases. Ann. Res. Hosp., 2019, Vol. 3, 10. doi: 10.21037/arh.2019.03.02.
  152. Song C. The effect of thymectomy and IL-1 on memory: implications for the relationship between immunity and depression. Brain Behav. Immun., 2002, Vol. 16, no. 5, pp. 557-568.
  153. Spangelo B.L., Judd A.M., Call G.B., Zumwalt J., Gorospe W.C. Role of the cytokines in the hypothalamic-pituitary-adrenal and gonadal axes. Neuroimmunomodulation, 1995, Vol. 2, no. 5, pp. 299-312.
  154. Spengler R.N., Chensue S.W., Giacherio D.A., Blenk N., Kunkel S.L. Endogenous norepinephrine regulates tumor necrosis factor-alpha production from macrophages in vitro. J. Immunol., 1994, Vol. 152, no. 6, pp. 3024-3031.
  155. Stellos K., Langer H., Daub K., Schoenberger T., Gauss A., Geisler T., Bigalke B., Mueller I., Schumm M., Schaefer I., Seizer P., Kraemer B.F., Siegel-Axel D., May A.E., Lindemann S., Gawaz M. Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells. Circulation, 2008, Vol. 117, no. 2, pp. 206-215.
  156. Stern W.C., Miller M., Jalowiec J.E., Forbes W.B., Morgane P.J. Effects of growth hormone on brain biogenic amine levels. Pharmacol. Biochem. Behav., 1975, Vol. 3, no. 6, pp. 1115-1118.
  157. Sweeney M.D., Zhao Z., Montagne A., Nelson A.R., Zlokovic B.V. Blood-Brain Barrier: From Physiology to Disease and Back. Physiol. Rev., 2019, Vol. 99, pp. 21-78.
  158. Tedeschi B., Barrett J.N., Keane R.W. Astrocytes produce interferon that enhances the expression of H-2 antigens on a subpopulation of brain cells. J. Cell Biol., 1986, Vol. 102, no. 6, pp. 2244-2253.
  159. Thompson K.B., Krispinsky L.T., Stark R.J. Late immune consequences of combat trauma: a review of trauma-related immune dysfunction and potential therapies. Mil. Med. Res., 2019, Vol. 6, no. 1, 11. doi: 10.1186/s40779-019-0202-0.
  160. Tolstova E.M., Zaitseva O.V. Thymus physiology and pathology in childhood. Pediatrics named after G.N. Speransky. 2018, Vol. 97, no. 6, pp. 166-172.
  161. Turrini P., Aloe L. Evidence that endogenous thymosin alpha-1 is present in the rat central nervous system. Neurochem. Int., 1999, Vol. 35, no. 6, pp. 463-470.
  162. Tyler W.J., Alonso M., Bramham C.R., Pozzo-Miller L.D. From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn. Mem., 2002, Vol. 9, no. 5, pp. 224-237.
  163. Valadez-Cosmes P., Vázquez-Martínez E.R., Cerbón M., Camacho-Arroyo I. Membrane progesterone receptors in reproduction and cancer. Mol. Cell. Endocrinol., 2016, Vol. 434, pp. 166-175.
  164. Wise T. In vitro and in vivo effects of thymulin on rat testicular steroid synthesis. J. Steroid Biochem. Mol. Biol., 1998, Vol. 66, no. 3, pp. 129-135.
  165. Yang P., Tian H., Zou Y.-R., Chambon P., Ichinose H., Honig G., Diamond B., Kim S.J. Epinephrine Production in Th17 Cells and Experimental Autoimmune Encephalitis. Front. Immunol., 2021, Vol. 12, 616583. doi: 10.3389/fimmu.2021.616583.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Chereshnev V.A., Yushkov B.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).