Increased relative CD5+ILC2 counts in patients with rheumatoid arthritis

Cover Page

Cite item

Full Text

Abstract

Innate lymphoid cells (ILCs) are the innate analogues of lymphocytes that do not express antigen-specific receptors and are primarily found in tissues and mucosa. ILCs are divided into three groups based on the transcription factors and cytokines they secrete. Group 1 ILCs produce interferon (IFN)-γ in response to IL-12 and are dependent on the transcription factor T-bet; group 2 ILCs (ILC2s) predominantly produce type 2 cytokines (IL-5, IL-4, IL-9, and IL-13) in response to IL-33, IL-25, and thymic stromal lymphopoietin (TSLP) and are dependent on GATA3. Group 3 ILCs include ILC3s and lymphoid tissue inducer cells (LTi). The latter group secretes IL-17 and IL-22 in response to IL-1β and IL-23 and functionally depends on RORγt. Recently, early ILC precursors were found in peripheral blood, which were defined by the CD5 marker and are likely to be of thymic origin. These cells can, on demand, enter the bloodstream (like monocytes), move with the blood flow into tissues for subsequent differentiation into a mature phenotype. In this work, we assessed the content of CD5+ILC2 in peripheral blood of patients with rheumatoid arthritis (RA), which is characterized by chronic inflammation in the joints and uncontrolled cell proliferation, thus maintaining the inflammatory events. In this work, we used peripheral blood from patients with RA (n = 7) and conditionally healthy donors (n = 13). The obtained peripheral blood mononuclear cells (PBMPs) were stained with the following panel of antibodies: anti-lineage (CD2/3/14/16/19/20/56/235a), antiCD11c and anti-FceR1 alpha-FITC, anti-CD294-PE, anti-CD127-PerCP/Cy5.5, antiCD117-APC, anti-CD5-BV-450. Innate lymphoid cells were defined as Lin-CD127+, CD294+ILCs were identified as ILC2. The proportion of CD5+ cells among ILC2 was also evaluated. The cell phenotype was analyzed by flow cytometry. We showed that the proportion of ILC2 among all PBMPs was significantly lower in patients with RA compared to the donor group, and the number of CD5+ILC2 among ILC2 was significantly higher than in the control group. The obtained results are unique and provide us with new data on the changing percentage of ILC2 among PC MNCs and CD5+ILC2 among ILC2.

About the authors

Olga S. Boeva

Research Institute of Fundamental and Clinical Immunology

Author for correspondence.
Email: starchenkova97@gmail.com

Resident, Postgraduate Student, Assistant Researcher, Laboratory of Clinical Immunopathology

Russian Federation, Novosibirsk

V. I. Borisevich

Research Institute of Fundamental and Clinical Immunology

Email: borvad2001@mail.ru

Student

Russian Federation, Novosibirsk

V. S. Abbasova

Novosibirsk State Medical University

Email: abbasovaveronik@gmail.com
ORCID iD: 0009-0003-6038-4990

student

Russian Federation, Novosibirsk

Vladimir A. Kozlov

Research Institute of Fundamental and Clinical Immunology

Email: vakoz40@yandex.ru

PhD, MD (Medicine), Full Member, Russian Academy of Sciences, Head, Laboratory of Clinical Immunopathology, Scientific Director

Russian Federation, Novosibirsk

M. A. Korolev

Research Institute of Clinical and Experimental Lymрhology, Branch of the Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences

Email: kormax@bk.ru
ORCID iD: 0000-0002-4890-0847

PhD, MD (Medicine), Chief Rheumatologist of the Ministry of Health of the Novosibirsk Region, Deputy Head, Rheumatologist, Head of the Laboratory of Connective Tissue Pathology

Russian Federation, Novosibirsk

V. O. Omelchenko

Research Institute of Clinical and Experimental Lymрhology, Branch of the Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences

Email: v.o.omelchenko@gmail.com
ORCID iD: 0000-0001-6606-7185

PhD (Medicine), Rheumatologist, Department of Rheumatology, Researcher, Laboratory of Connective Tissue Pathology

Russian Federation, Novosibirsk

Yu. D. Kurochkina

Research Institute of Clinical and Experimental Lymрhology, Branch of the Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences

Email: juli_k@bk.ru

PhD (Medicine), Rheumatologist of the Department of Rheumatology, Researcher of the Laboratory of Connective Tissue Pathology

Russian Federation, Novosibirsk

Anna D. Rybakova

Research Institute of Clinical and Experimental Lymрhology, Branch of the Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences

Email: a.rybakova1@g.nsu.ru

Junior Researcher, Laboratory of Pharmacological Modeling and Screening of Bioactive Molecules

Russian Federation, Novosibirsk

Ekaterina A. Pashkina

Research Institute of Fundamental and Clinical Immunology

Email: pashkina.e.a@yandex.ru
ORCID iD: 0000-0002-4912-5512

PhD (Biology), Senior Researcher, Laboratory of Clinical Immunopathology

Russian Federation, Novosibirsk

References

  1. Боева О.С., Беришвили М.Т., Сизиков А.Э., Пашкина Е.А. Фенотипические особенности врожденных лимфоидных клеток при ревматоидном артрите // Российский иммунологический журнал, 2022. Т. 25, № 4. C. 393-398. [Boeva O.S., Berishvili M.T., Sizikov A.E., Pashkina E.A. Phenotypic features of innate lymphoid cells in rheumatoid arthritis. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2022, Vol. 25, no. 4, pp. 393-398. (In Russ.)] doi: 10.46235/1028-7221-1184-PFO.
  2. Боева О.С., Козлов В.А., Сизиков А.Э., Королев М.А., Чумасова О.А., Омельченко В.О., Курочкина Ю.Д., Пашкина Е.А. Сравнение фенотипических свойств врожденных лимфоидных клеток на разных стадиях ревматоидного артрита // Медицинская иммунология, 2023. Т. 25, № 5. С. 1085-1090. [Boeva O.S., Kozlov V.A., Sizikov A.E., Korolev M.A., Chumasova O.A., Omelchenko V.O., Kurochkina Yu.D., Pashkina E.A. Comparison of phenotypic properties of innate lymphoid cells at various stages of rheumatoid arthritis. Meditsinskaya immunologiya = Medical Immunology (Russia), 2023, Vol. 25, no. 5, pp. 1085-1090. (In Russ.)] doi: 10.15789/1563-0625-COP-2786.
  3. Alisjahbana A., Gao Y., Sleiers N., Evren E., Brownlie D., von Kries A., Jorns C., Marquardt N., Michaëlsson J., Willinger T. CD5 surface expression marks intravascular human innate lymphoid cells that have a distinct ontogeny and migrate to the lung. Front. Immunol., 2021, Vol. 12, 752104. doi: 10.3389/fimmu.2021.752104.
  4. Barik S., Miller M.M., Cattin-Roy A.N., Ukah T.K., Chen W., Zaghouani H. IL-4/IL-13 signaling inhibits the potential of early thymic progenitors to commit to the T cell lineage. J. Immunol., 2017, Vol. 199, no. 8, pp. 2767-2776.
  5. Bartemes K.R., Kita H. Roles of innate lymphoid cells (ILCs) in allergic diseases: The 10-year anniversary for ILC2s. J. Allergy Clin. Immunol., 2021, Vol. 147, no. 5, pp. 1531-1547.
  6. Cupedo T. ILC2: at home in the thymus. Eur. J. Immunol., 2018, Vol. 48, no. 9, pp. 1441-1444. doi: 10.1002/eji.201847779.
  7. Jan-Abu S.C., Kabil A., McNagny K.M. Parallel origins and functions of T cells and ILCs. Clin. Exp. Immunol., 2023, Vol. 213, no. 1, pp. 76-86.
  8. Jones R., Cosway E.J., Willis C., White A.J., Jenkinson W.E., Fehling, H.J., Anderson G., Withers D.R. Dynamic changes in intrathymic ILC populations during murine neonatal development. Eur. J. Immunol., 2018, Vol. 48, no. 9, pp. 1481-1491.
  9. Nagasawa M., Germar K., Blom B., Spits H. Human CD5+ innate lymphoid cells are functionally immature and their development from CD34+ progenitor cells is regulated by Id2. Front. Immunol., 2017, Vol. 8, 1047. doi: 10.3389/fimmu.2017.01047.
  10. Nagasawa M., Spits H., Ros X.R. Innate Lymphoid Cells (ILCs): Cytokine Hubs Regulating Immunity and Tissue Homeostasis. Cold Spring Harb. Perspect. Biol., 2018, Vol. 10, no. 12, a030304. doi: 10.1101/cshperspect.a030304.
  11. Omata Y., Frech M., Primbs T., Lucas S., Andreev D., Scholtysek C., Sarter K., Kindermann M., Yeremenko N., Baeten D.L., Andreas N., Kamradt T., Bozec A., Ramming A., Krönke G., Wirtz S., Schett G., Zaiss M.M. Group 2 Innate Lymphoid Cells Attenuate Inflammatory Arthritis and Protect from Bone Destruction in Mice. Cell Rep., 2018, Vol. 24, no. 1, pp. 169-180.
  12. Shin S.B., Lo B.C., Ghaedi M., Scott R.W., Li Y., Messing M., Hernaez D.C., Cait J., Murakami T., Hughes M.R., Leslie K.B., Underhill T.M., Takei F., McNagny K.M. Abortive γδTCR rearrangements suggest ILC2s are derived from T-cell precursors. Blood Adv., 2020, Vol. 4, no. 21, pp. 5362-5372.
  13. Shin S.B., McNagny K.M. ILC-You in the thymus: a fresh look at innate lymphoid cell development. Front. Immunol., 2021, Vol. 12, 681110. doi: 10.3389/fimmu.2021.681110.
  14. Wang T., Rui J., Shan W., Xue F., Feng D., Dong L., Mao J., Shu Y., Mao C., Wang X. Imbalance of Th17, Treg, and helper innate lymphoid cell in the peripheral blood of patients with rheumatoid arthritis. Clin. Rheumatol., 2022, Vol. 41, no. 12, pp. 3837-3849.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Percentage of ILC2 among peripheral blood mononuclear cells

Download (51KB)
3. Figure 2. Percentage of CD5+ILC2 cells among ILC2

Download (45KB)

Copyright (c) 2025 Boeva O.S., Borisevich V.I., Abbasova V.S., Kozlov V.A., Korolev M.A., Omelchenko V.O., Kurochkina Y.D., Rybakova A.D., Pashkina E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).