Investigation of Deuterium Saturation of a Polycrystalline Diamond Target at the HELIS Ion Accelerator

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of a study of deuterium ion saturation of a textured polycrystalline diamond target are presented. Deuterium implantation into a polycrystalline diamond target was carried out by a deuterium ion beam at the HELIS accelerator (LPI RAS) at a deuterium ion energy of 25 keV and a beam current of 30–35 μA. Fast neutrons formed in the reaction of deuterium nuclei synthesis in the target were detected. Neutron registration was carried out by scintillation detectors with organic crystals. The calibration of the scintillation detectors was performed using the ING-061 neutron generator. During the experiments, several sessions of irradiation of a polycrystalline diamond target with a beam of deuterium ions were carried out. The yield of neutrons from the target was recorded depending on the irradiation time and the time between irradiation sessions. A simulation of the passage of deuterium ions in diamond was carried out. According to the experimental results, taking into account the calculations of the energy of deuterium ions and the cross section of the nuclear reaction (d + d), depending on the depth of deuterium passage into the target, the values of deuterium concentration in the surface layer of the polycrystalline diamond target were obtained.

About the authors

M. A Kirsanov

National Research Nuclear University "MEPhI"

Email: makirsanov@mephi.ru
Moscow, Russia

S. G Klimanov

National Research Nuclear University "MEPhI"

Moscow, Russia

M. A Negodaev

Lebedev Physical Institute RAS

Moscow, Russia

S. A Movchun

Lebedev Physical Institute RAS

Moscow, Russia

References

  1. Негодаев М.А., Багуля А.В. Электрофизическая установка “Гелис”. Препринт № 11. Москва: РАН. Физ. ин-т им. П.Н. Лебедева. 1996. 44 с.
  2. Bagulya A.V., Dalkarov O.D., Negodaev M.A., Rusetskii A.S., Chubenko A.P., Ralchenko V.G., Bolshakov A.P. // Nucl. Instrum. Methods Phys. Res. B. 2015. V. 355. P. 340. https://doi.org/10.1016/j.nimb.2015.01.021
  3. Dalkarov O.D., Negodaev M.A., Rusetskii A.S., Chubenko A.P., Pivovarov Yu.L., Tukhfatullin T.A. // Phys. Rev. Accelerators Beams. 2019. V. 22. P. 034201. https://www.doi.org/10.1103/PHYSREVACCELBEAMS. 22.034201
  4. Dalkarov O.D., Negodaev M.A., Rusetskii A.S., Oginov A.V., Chubenko A.P., Tsechosh V.I., Kirsanov M.A., Popovich A.F., Pivovarov Yu.L., Tukhfatullin T.A. // JINST. 2020. № 15. P. C06062. https://doi.org/10.1088/1748-0221/15/06/C06062
  5. Bagulya A.V., Dalkarov O.D., Negodaev M.A., Pivovarov Yu.L., Rusetskii A.S., Tukhfatullin T.A. // Nucl. Instrum. Methods Phys. Res. B. 2017. V. 402. P. 243. http://dx.doi.org/10.1016/j.nimb.2017.02.059
  6. Negodaev M.A., Kirsanov M.A., Movchun S.A., Popovich A.F., Rusetskii A.S., Ryabov V.A., Shpakov K.V., Tsekhosh V.I., Amosov V.N., Artemev K.K., Meshchaninov S.A., Rodionov N.B., Skopintsev D.A. // Bulletin of the Lebedev Physics Institute. 2022. V. 49. № 4. Р. 110. https://www.doi.org/10.3103/S1068335622040030
  7. Ralchenko V.G., Pleuler E., Lu F.X., Sovyk D.N., Bolshakov A.P., Guo S.B., Tang W.Z., Gontar I.V., Khomich A.A., Zavedeev E.V., Konov V.I. // Diamond Relat. Mater. 2012. V. 23. Р. 172. https://doi.org/10.1016/j.diamond.2011.12.031
  8. Sukhadolau A.V., Ivakin E.V., Ralchenko V.G., Khomich A.V., Vlasov A.V., Popovich A.F. // Diamond Relat. Mater. 2005. V. 14. Р. 589. https://www.doi.org/10.1016/j.diamond.2004.12.002
  9. Bollinger L.M., Thomas G. E. // Rev. Sci. Instrum. 1961. V. 32. P. 1044. http://dx.doi.org/10.1063/1.1717610
  10. Yanagida T., Watanabe K., Fujimoto Y. // Nucl. Instrum. Methods Phys. Res. A. 2015. V. 784. Р. 111. http://dx.doi.org/10.1016/j.nima.2014.12.031
  11. Sardet A., Varignon C., Laurent B., Granier T., Oberstedt A. // Nucl. Instrum. Methods Phys. Res. A. 2015. V. 792. Р. 74. http://dx.doi.org/10.1016/j.nima.2015.04.038
  12. Matei C., Hambsch F.-J., Oberstedt S. // Nucl. Instrum. Methods Phys. Res. А. 2012. V. 676. Р. 135. https://www.doi.org/10.1016/j.nima.2011.11.076
  13. Kim H.D., Cho G.S., Kim H.J. // Radiation Measurements. 2013. V. 58. P. 133. http://dx.doi.org/10.1016/j.radmeas.2013.01.004
  14. Cester D., Lunardon M., Nebbia G., Stevanato L., Viesti G., Petrucci S., Tintori.C. // Nucl. Instrum. Methods Phys. Res. A. 2014. V. 748. Р. 33. http://dx.doi.org/10.1016/j.nima.2014.02.032
  15. Nakhostin M. // Nucl. Instrum. Methods Phys. Res. A. 2012. V. 672. Р. 1. https://www.doi.org/10.1016/j.nima.2011.12.113
  16. Ruch M.L., Flaska M., Pozzi S.A. // Nucl. Instrum. Methods Phys. Res. А. 2015. V. 793. Р. 1. http://dx.doi.org/10.1016/j.nima.2015.04.053
  17. Kirsanov M.A., Klimanov S.G., Nazarov I.V., Chepurnov A.S., Kubankin A.S. // J. Phys.: Conf. Ser. 2020. V. 1690. P. 012057. https://www.doi.org/10.1088/1742-6596/1690/1/ 012057
  18. Kirsanov M.A., Klimanov S.G., Chepurnov A.S. // J. Phys.: Conf. Ser. 2020. V. 1690. P. 012061. https://www.doi.org/10.1088/1742-6596/1690/1/ 012061
  19. Polack K., Flaska M., Enqvist A., Sosa C, Lawrence C., Pozzi S. // Nucl. Instrum. Methods Phys. Res. А. 2015. V. 795. Р. 253. https://www.doi.org/10.1016/j.nima.2015.05.048
  20. Нейтронный генератор ИНГ-061 (2024) ВНИИА Росатом, Россия. http://www.vniia.ru/production/neitronnie-generatory/karotazh/neytronnye-generatory-dlya-karotazhnoy-apparatury_.php?sphrase_id=18215#ing-061.
  21. Измеритель потока нейтронов, автоматизированный ИНПА (2024) ВНИИА Росатом, Россия. https://vniia.ru/production/neitronnie-generatory/ izmerenie-potoka-neitronov/inpa/inpa-izmeritel-neytronnogo-potoka-avtomatizirovannyy.php
  22. SRIM Program (2013) http://www.srim.org.
  23. Ziegler J.F., Ziegler M.D., Biersack J.P. // Nucl. Instrum. Methods Phys. Res. B. 2010. V. 268. Р. 1818. https://www.doi.org/10.1016/j.nimb.2010.02.091
  24. Stoller R.E., Toloczko M.B., Was G.S., Certain A.G., Dwaraknath S., Garner F.A. // Nucl. Instrum. Methods Phys. Res. B. 2013. V. 310. Р. 75. https://www.doi.org/10.1016/j.nimb.2013.05.008
  25. Shulga V.I. // Appl. Surf. Sci. 2018. V. 439. P. 456. https://www.doi.org/10.1016/j.apsusc.2018.01.039
  26. Bosch H.S., Halle G.M. // Nucl. Fusion. 1992. V. 32. Р. 611. https://www.doi.org/10.1088/0029-5515/32/4/I07
  27. Brown R.E., Jarmie N. // Phys. Rev. C. 1990. V. 41. P. 1391. https://www.doi.org/10.1103/PhysRevC.41.1391
  28. Krauss A., Becker H.W., Trautvetter H.P., Rolfs C., Brand K. // Nucl. Phys. A. 1987. V. 465. P. 150. https://www.doi.org/10.1016/0375-9474(87)90302-2

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).