Numerical Study of Second Harmonic Generation in GaP Optical Nanoresonators

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

One of the most promising areas of research at the moment is the development of optical frequency summation and doubling systems, which use nonlinear crystals as an active element. Gallium phosphide (GaP) in the form of nanowires, which have a high dielectric constant and are transparent in the visible and infrared regions, can be used as a promising material for these elements. These crystals can be easily integrated into modern photonics systems due to their unique shape. In this study, we investigated the process of second harmonic generation in GaP nanowires, depending on their geometric parameters and the direction of incident radiation. We found the conditions that provide the highest efficiency of the generation process along the axis of the crystal. The possibility of the propagation of the second harmonic along the nanowire axis in air is demonstrated for specific parameters of the system — the diameter and angle of radiation. An increase in diameter leads to a reduction in the difference between the actual optimal direction and the predicted one, as the size- related characteristics of the filamentous nanocrystal tend to become more volumetric with increasing diameter. Results can be used to create various nanophotonic devices.

About the authors

A. S Funtikova

Peter the Great Saint—Petersburg Polytechnic University

Email: n.fn@mail.ru
Saint—Petersburg, Russia

A. M Mozharov

Alferov University

Saint—Petersburg, Russia

V. V Fedorov

Peter the Great Saint—Petersburg Polytechnic University

Saint—Petersburg, Russia

I. S Mukhin

Peter the Great Saint—Petersburg Polytechnic University

Saint—Petersburg, Russia

References

  1. Miller D.A.B. // Proc IEEE. 2000. V. 88. №6. P. 728. https://www.doi.org/10.1109/5.867687
  2. Семенов А.С., Смирнов В.Л., Шмалько А.В. // Квантовая электроника. 1987. Т. 14. № 7. С. 1319. https://www.doi.org/10.1070/QE1987v017n07ABEH009450
  3. Holden H.T. // Circuit World. 2003. V. 29. № 4. P. 42. https://www.doi.org/10.1108/03056120310478578
  4. Lelit M., Słowikowski M., Filipiak M., Juchniewicz M., Stonio B., Michalak B., Pavłov K., Myśliwiec M., Wiśniewski P., Kaźmierczak A., Anders K., Stopiński S., Beck R. B., Piramidowicz R. // Materials. 2022. V. 15. № 4. P. 1398. https://www.doi.org/10.3390/ma15041398
  5. Xiang Ch., Jin W., Bowers J.E. // Photon. Res. 2022. V. 10. P. A82. https://www.doi.org/https://doi.org/10.1364/ PRJ.452936
  6. Zhou J., Wang X., Kang R., Liu Z., Cheng P., Zhao J., Zuo Z. // Opt. Comm. 2024. V. 554. P. 130148. https://www.doi.org/10.1016/j.optcom.2023.130148
  7. Hirano S., Takeuchi N., Shimada S., Masuya K., Ibe K., Tsunakawa H., Kuwabara M. // J. Appl. Phys. 2005. V. 98. № 9. P. 305. https://www.doi.org/10.1063/1.2113418
  8. Caspani L., Duchesne D., Dolgaleva K., Wagner S.J., Ferrera M., Razzari L., Pasquazi A., Peccianti M., Moss D.J., Aitchison J.S., Morandotti R. // J. Opt. Soc. Am. B. 2011. V. 28. № 12. P. A67. https://www.doi.org/10.1364/JOSAB.28.000A67
  9. Stegeman G.I., Wright E.M., Finlayson N., Zanoni R., Seaton C.T. // Journal of Lightwave Technology. 1988. V. 6. № 6. P. 953. https://www.doi.org/10.1109/50.4087
  10. Baranova I.M., Dolgova T.V., Kolmychek I.A., Maydykovskiy A.I., Mishina E.D., Murzina T.V., Fedyanin A.A. // Quantum Electronics. 2022. V. 52. № 5. P. 407. https://www.doi.org/10.1070/qel18037
  11. Widhalm A., Golla C., Weber N., Mackwitz P., Zrenner A., Meier C. // Optics Express. 2022. V. 30. № 4. P. 4867. https://www.doi.org/10.1364/oe.443489
  12. Wiecha P.R., Arbouet A., Girard Ch., Baron T., Paillard V. // Phys. Rev. B. 2016. V. 93. P. 125421. https://www.doi.org/10.1103/PhysRevB.93.125421
  13. Levine Z.H., Allan D.C. // Phys. Rev. B. 1991. V. 44. № 23. P. 12781. https://www.doi.org/10.1103/PhysRevB.44.12781
  14. Anthur A.P., Zhang H., Akimov Y., Rong Ong J., Kalashnikov D., Kuznetsov A.I., Krivitsky L. // Optics Express. 2021. V. 29. № 7. P. 1. https://www.doi.org/10.1364/oe.409758
  15. Rivoire K., Buckley S., Hatami F., Vučković J. // Appl. Phys. Lett. 2011. V. 98. № 26. P. 263113. https://www.doi.org/10.1063/1.3607288
  16. Maliakkal C. B., Gokhale M., Parmar J., Bapat R. D., Chalke B. A., Ghosh S., Bhattacharya A.// Nanotechnology. 2019. V. 30. P. 254002. https://www.doi.org/10.1088/1361-6528/ab0a46
  17. Mårtensson T., Svensson C.P.T., Wacaser B.A., Larsson M.W., Seifert W., Deppert K., Gustafsson, A., Wallenberg L.R., Samuelson L. // Nano Letters. 2004. V. 4. № 10. P. 1987. https://www.doi.org/10.1021/nl0487267
  18. Капшай В.Н., Толкачёв А.И., Шамына А.А. // Оптика и спектроскопия. 2021. T. 129. № 12. С. 1537. https://www.doi.org/10.21883/os.2021.12.51742. 2385-21
  19. Fedorov V.V., Bolshakov A., Sergaeva O., Neplokh V., Markina D., Bruyere S., Saerens G., Petrov M.I., Grang R., Timofeeva M., Makarov S.V., Mukhin I.S. // ACS Nano. 2020. V. 14. № 8. P. 10624. https://www.doi.org/10.1021/acsnano.0c04872
  20. Adachi S. // J. Appl. Phys. 1989. V. 66. № 12. P. 6030. https://www.doi.org/10.1063/1.343580

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).