Relaxation of Plasmon Excitations in Solids

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper examines the influence of the decay process of plasmonic (Langmuir) excitations on secondary electron emission processes. An assessment of the lifetime of the plasmon excitations decay process is carried out. A connection is established between the relaxation process of plasmon excitations and electron-photon emission yield. The electron-ion plasma of a solid body, interacting with an electron beam whose energy substantially exceeds the Fermi energy, is considered based on quantum electrodynamics. It is shown that the quantum description of plasmons leads to the concept of the electromagnetic vacuum of longitudinal Langmuir waves. The vacuum of longitudinal waves significantly alters the dielectric permeability of the solid-body plasma, resulting in the broadening and shifting of peaks associated with energy losses of fast electrons scattered by the solid. The interaction of plasmons with the plasmonics vacuum leads to the relaxation of plasma excitations and the generation of longitudinal photons. The relaxation mechanism of plasmons presented in this work helps to explain a number of seemingly anomalous phenomena, namely the polarization of electron-photon emission observed at plasmonic frequencies and the features in the spectra of secondary electron emission at plasmonic energies observed during ion and electron bombardments. The paper presents a comparison of the spectra of electron-photon emission with the differential cross-sections of inelastic energy losses of fast electrons due to plasmon excitation. Possible practical applications of the phenomena observed during the relaxation of collective excitations of solid-body plasma are discussed.

About the authors

V. P. Afanas’ev

National Research University “MPEI”

Moscow, Russia

L. G. Lobanova

National Research University “MPEI”

Email: lida.lobanova.2017@mail.ru
Moscow, Russia

References

  1. Lin Y., Joy D.C. // Surf. Interface Anal. 2005. V. 37. № 11. P. 895. https://www.doi.org/10.1002/sia.2107
  2. Chung M.S., Everhart T.E. // Phys. Rev. B. 1977. V. 15. № 10. P. 4699. https://www.doi.org/10.1103/PhysRevB.15.4699
  3. Ganachaud J.P., Cailler M. // Surf. Sci. 1979. V. 83. № 2. P. 498. https://www.doi.org/10.1016/0039-6028(79)90059-1
  4. Rösler M., Brauer W. // Phys. Status Solidi B. 1981. V. 104. № 1. P. 161. https://www.doi.org/10.1002/pssb.2221040117
  5. Werner W.S.M., Ruocco A., Offi F., Iacobucci S., Smekal W., Winter H., Stefani G. // Phys. Rev. B. 2008. V. 78. № 23. P. 233403. https://www.doi.org/10.1103/PhysRevB.78.233403
  6. Werner W.S.M., Salvat-Pujol F., Bellissimo A., Khalid R., Smekal W., Novak M., Ruocco A., Stefani G. // Phys. Rev. B. 2013. V. 88. № 20. P. 201407(R). https://www.doi.org/10.1103/PhysRevB.88.201407
  7. Werner W.S.M., Astašauskas V., Ziegler P., Bellissimo A., Stefani G., Linhart L., Libisch F. // Phys. Rev. Lett. 2020. V. 125. № 19. P. 196603. https://www.doi.org/10.1103/PhysRevLett.125.196603
  8. Werner W.S.M., Simperl F., Blödorn F., Brunner J., Kero J., Bellissimo A., Ridzel O. // Phys. Rev. Lett. 2024. V. 132. P. 186203. https://www.doi.org/10.1103/PhysRevLett.132.186203
  9. Afanas’ev V.P., Gryazev A.S., Efremenko D.S., Kaplya P.S. // Vacuum. 2017. V. 136. P. 146. https://www.doi.org/10.1016/j.vacuum.2016.10.021
  10. Ritchie R.H. // Phys. Rev. 1957. V. 106. P. 874. https://www.doi.org/10.1103/PhysRev.106.874
  11. Veklenko B.A., Afanas’ev V.P., Lubenchenko A.V. // J. Exp. Theor. Phys. 2014. V. 118. № 4. P. 521. https://www.doi.org/10.1134/S106377611403008X
  12. Baragiola R.A., Dukes C.A. // Phys. Rev. Lett. 1996. V. 76. № 14. P. 2547. https://www.doi.org/10.1103/PhysRevLett.76.2547
  13. Ахиезер А.И., Берестецкий В.Б. Квантовая Электродинамика. М.: Наука, 1969. 623 с.
  14. Келдыш Л.В. // ЖЭТФ. 1964. Т. 47. с. 1515.
  15. Lindhard J. // Dan. Vid. Selsk Mat.-Fys. Medd. 1954. V. 28. № 8.
  16. Александров А.Ф., Богданкевич Л.С., Рухадзе А.А. Основы электродинамики плазмы. М.: Высшая школа, 1988. 424 c.
  17. Власов А.А. // ЖЭТФ. 1938. № 8. с. 291.
  18. Klimontovich Iu.L., Silin V.P. // JETP. 1961. V. 13. № 4. Р. 852.
  19. Векленко Б.А. // Инженерная Физика. 2013. № 1. с. 33.
  20. Chung M.S., Everhart T.E. // Phys. Rev. B. 1977. V. 15. № 10. P. 4699. https://www.doi.org/10.1103/PhysRevB.15.4699
  21. Ganachaud J.P., Cailler M. // Surf. Sci. 1979. V. 83. № 2. P. 498. https://www.doi.org/10.1016/0039-6028(79)90059-1
  22. Rösler M., Brauer W. // Phys. Status Solidi B. 1981. V. 104. № 2. P. 575. https://www.doi.org/10.1002/pssb.2221040222
  23. Von Koch C.V. // Phys. Rev. Lett. 1970. V. 25. № 12. P. 792. https://www.doi.org/10.1103/PhysRevLett.25.792
  24. Mohler P.L., Boeckner C. // J. Research Nat. Bur. Standards. 1931. V. 6. P. 673.
  25. Chung M.S., Callcott T.A., Kretschmann E., Arakawa E.T. // Surf. Sci. 1980. V. 91. № 1. P. 245. https://www.doi.org/10.1016/0039-6028(80)90083-7
  26. Boersch H., Dobberstein P., Fritzsche D., Sauerbrey G. // Zeitschrift fuer Physik. 1965. V. 187. P. 97. https://www.doi.org/10.1007/BF01387187
  27. Cram L.S., Arakawa E.T. // Phys. Rev. 1967. V. 153. № 2. P. 455. https://www.doi.org/10.1103/PhysRev.153.455
  28. Поп С.С., Крицкий В.А., Запесочный И.П. // Письма в ЖТФ. 1979. Т. 5. № 23. с. 1452.
  29. Крицкий В.А., Кляп М.П., Овчинников В.Л. // Письма в ЖТФ. 1981. Т. 7. с. 290.
  30. Бобылев Ю.В., Кузелев М.В. // Физика плазмы. 2011. Т. 37. с. 953.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).