Relaxation of Plasmon Excitations in Solids
- Authors: Afanas’ev V.P.1, Lobanova L.G.1
-
Affiliations:
- National Research University “MPEI”
- Issue: No 8 (2025)
- Pages: 85–93
- Section: Articles
- URL: https://ogarev-online.ru/1028-0960/article/view/376507
- DOI: https://doi.org/10.7868/S3034573125080095
- ID: 376507
Cite item
Abstract
The paper examines the influence of the decay process of plasmonic (Langmuir) excitations on secondary electron emission processes. An assessment of the lifetime of the plasmon excitations decay process is carried out. A connection is established between the relaxation process of plasmon excitations and electron-photon emission yield. The electron-ion plasma of a solid body, interacting with an electron beam whose energy substantially exceeds the Fermi energy, is considered based on quantum electrodynamics. It is shown that the quantum description of plasmons leads to the concept of the electromagnetic vacuum of longitudinal Langmuir waves. The vacuum of longitudinal waves significantly alters the dielectric permeability of the solid-body plasma, resulting in the broadening and shifting of peaks associated with energy losses of fast electrons scattered by the solid. The interaction of plasmons with the plasmonics vacuum leads to the relaxation of plasma excitations and the generation of longitudinal photons. The relaxation mechanism of plasmons presented in this work helps to explain a number of seemingly anomalous phenomena, namely the polarization of electron-photon emission observed at plasmonic frequencies and the features in the spectra of secondary electron emission at plasmonic energies observed during ion and electron bombardments. The paper presents a comparison of the spectra of electron-photon emission with the differential cross-sections of inelastic energy losses of fast electrons due to plasmon excitation. Possible practical applications of the phenomena observed during the relaxation of collective excitations of solid-body plasma are discussed.
About the authors
V. P. Afanas’ev
National Research University “MPEI”Moscow, Russia
L. G. Lobanova
National Research University “MPEI”
Email: lida.lobanova.2017@mail.ru
Moscow, Russia
References
- Lin Y., Joy D.C. // Surf. Interface Anal. 2005. V. 37. № 11. P. 895. https://www.doi.org/10.1002/sia.2107
- Chung M.S., Everhart T.E. // Phys. Rev. B. 1977. V. 15. № 10. P. 4699. https://www.doi.org/10.1103/PhysRevB.15.4699
- Ganachaud J.P., Cailler M. // Surf. Sci. 1979. V. 83. № 2. P. 498. https://www.doi.org/10.1016/0039-6028(79)90059-1
- Rösler M., Brauer W. // Phys. Status Solidi B. 1981. V. 104. № 1. P. 161. https://www.doi.org/10.1002/pssb.2221040117
- Werner W.S.M., Ruocco A., Offi F., Iacobucci S., Smekal W., Winter H., Stefani G. // Phys. Rev. B. 2008. V. 78. № 23. P. 233403. https://www.doi.org/10.1103/PhysRevB.78.233403
- Werner W.S.M., Salvat-Pujol F., Bellissimo A., Khalid R., Smekal W., Novak M., Ruocco A., Stefani G. // Phys. Rev. B. 2013. V. 88. № 20. P. 201407(R). https://www.doi.org/10.1103/PhysRevB.88.201407
- Werner W.S.M., Astašauskas V., Ziegler P., Bellissimo A., Stefani G., Linhart L., Libisch F. // Phys. Rev. Lett. 2020. V. 125. № 19. P. 196603. https://www.doi.org/10.1103/PhysRevLett.125.196603
- Werner W.S.M., Simperl F., Blödorn F., Brunner J., Kero J., Bellissimo A., Ridzel O. // Phys. Rev. Lett. 2024. V. 132. P. 186203. https://www.doi.org/10.1103/PhysRevLett.132.186203
- Afanas’ev V.P., Gryazev A.S., Efremenko D.S., Kaplya P.S. // Vacuum. 2017. V. 136. P. 146. https://www.doi.org/10.1016/j.vacuum.2016.10.021
- Ritchie R.H. // Phys. Rev. 1957. V. 106. P. 874. https://www.doi.org/10.1103/PhysRev.106.874
- Veklenko B.A., Afanas’ev V.P., Lubenchenko A.V. // J. Exp. Theor. Phys. 2014. V. 118. № 4. P. 521. https://www.doi.org/10.1134/S106377611403008X
- Baragiola R.A., Dukes C.A. // Phys. Rev. Lett. 1996. V. 76. № 14. P. 2547. https://www.doi.org/10.1103/PhysRevLett.76.2547
- Ахиезер А.И., Берестецкий В.Б. Квантовая Электродинамика. М.: Наука, 1969. 623 с.
- Келдыш Л.В. // ЖЭТФ. 1964. Т. 47. с. 1515.
- Lindhard J. // Dan. Vid. Selsk Mat.-Fys. Medd. 1954. V. 28. № 8.
- Александров А.Ф., Богданкевич Л.С., Рухадзе А.А. Основы электродинамики плазмы. М.: Высшая школа, 1988. 424 c.
- Власов А.А. // ЖЭТФ. 1938. № 8. с. 291.
- Klimontovich Iu.L., Silin V.P. // JETP. 1961. V. 13. № 4. Р. 852.
- Векленко Б.А. // Инженерная Физика. 2013. № 1. с. 33.
- Chung M.S., Everhart T.E. // Phys. Rev. B. 1977. V. 15. № 10. P. 4699. https://www.doi.org/10.1103/PhysRevB.15.4699
- Ganachaud J.P., Cailler M. // Surf. Sci. 1979. V. 83. № 2. P. 498. https://www.doi.org/10.1016/0039-6028(79)90059-1
- Rösler M., Brauer W. // Phys. Status Solidi B. 1981. V. 104. № 2. P. 575. https://www.doi.org/10.1002/pssb.2221040222
- Von Koch C.V. // Phys. Rev. Lett. 1970. V. 25. № 12. P. 792. https://www.doi.org/10.1103/PhysRevLett.25.792
- Mohler P.L., Boeckner C. // J. Research Nat. Bur. Standards. 1931. V. 6. P. 673.
- Chung M.S., Callcott T.A., Kretschmann E., Arakawa E.T. // Surf. Sci. 1980. V. 91. № 1. P. 245. https://www.doi.org/10.1016/0039-6028(80)90083-7
- Boersch H., Dobberstein P., Fritzsche D., Sauerbrey G. // Zeitschrift fuer Physik. 1965. V. 187. P. 97. https://www.doi.org/10.1007/BF01387187
- Cram L.S., Arakawa E.T. // Phys. Rev. 1967. V. 153. № 2. P. 455. https://www.doi.org/10.1103/PhysRev.153.455
- Поп С.С., Крицкий В.А., Запесочный И.П. // Письма в ЖТФ. 1979. Т. 5. № 23. с. 1452.
- Крицкий В.А., Кляп М.П., Овчинников В.Л. // Письма в ЖТФ. 1981. Т. 7. с. 290.
- Бобылев Ю.В., Кузелев М.В. // Физика плазмы. 2011. Т. 37. с. 953.
Supplementary files


