The Effect of the Size of Ni Clusters Deposited on Alumina α-Al2O3(0001) upon the Adsorption Character of Nitric Oxide Molecules NO

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

With the aid of combination of surface analysis techniques and theoretical calculations by density functional theory it is shown that the electronic and NO-adsorption properties of Ni nanoclusters deposited onto alumina α-Al2O3(0001) are notably dependent upon the cluster size. The properties of Ni clusters with a mean size lower than 2 nm are primarily determined by chemisorption bond polarized towards the oxide Ni–Al2O3. As a result, the Ni clusters acquire a net positive charge. The latter is manifested in that that the intramolecular bond of adsorbed NO strengthens compared to that of NO on the bulk Ni. As the size of the cluster grows, the chemisorption bond depolarizes due to the charge redistribution from the Ni–Al2O3 interface to the Ni-Ni lateral bonds. When the equivalent coverage of Ni exceeds 0.25 equivalent monoatomic layers, their NO-adsorption properties resemble those characteristic for bulk Ni. Such a size-dependence opens an opportunity for controlled tuning of electronic and adsorption properties of the oxide supported metal clusters, as well as the metal/oxide system as a whole.

Авторлар туралы

T. Magkoev

Khetagurov North Ossetian State University

Email: t_magkoev@mail.ru
Vladikavkaz, Russia

Y. Men

Shanghai University of Engineering Science

Shanghai, P.R. China

R. Behjatmanesh-Ardakani

Ardakan University

Ardakan, I.R. Iran

M. Elahifard

Ardakan University

Ardakan, I.R. Iran

O. Ashkhotov

Berbekov Kabardino-Balkarian State University

Nalchik, Russia

Әдебиет тізімі

  1. Lee S.W., Lee H., Park Y., Kim H. Somorjai G.A., Park J.Y. // Surf. Sci. Rep. 2021. V. 76. P. 100532. https://doi.org/10.1016/j.surfrep.2021.100532
  2. Vedrine J.C. Metal Oxides in Heterogeneous Catalysis. Elsevier, 2018. P. 618. ISBN: 9780128116319
  3. Hirai T., Hasegawa K., Ota S., Suzuki M., Koyama T., Chiba D. // Phys. Rev. B. 2021. V. 104. P. 134401. https://doi.org/10.1103/PhysRevB.104.134401
  4. Holden K.E.K., Qi Y., Conley J.F. // J. Appl. Phys. 2021. V. 129. P. 144502. https://doi.org/10.1063/5.0045721
  5. Picone A., Riva M., Brambilla A., Calloni A., Bussetti G., Finazzi M., Ciccacci F., Duo L. // Surf. Sci. Rep. 2016. V. 71. P. 32. https://doi.org/10.1016/j.surfrep.2016.01.003
  6. Huang B.-C., Hsu C.-C., Chu Y.-H., Chiu Y.-P. // Progr. Surf. Sci. 2022. V. 97. P. 100662. https://doi.org/10.1016/j.progsurf.2022.100662
  7. Zhang J., Medlin J.W. // Surf. Sci. Rep. 2018. V. 73. P. 117. https://doi.org/10.1016/j.surfrep.2018.06.002
  8. Chen S., Xiong F., Huang W. // Surf. Sci. Rep. 2019. V. 74. P. 100471. https://doi.org/10.1016/j.surfrep.2019.100471
  9. Hirschmugl C.J. // // Surf. Sci. 2002. V. 500. P. 577. https://doi.org/10.1016/S0039-6028(01)01523-0
  10. Chen P.J., Goodmann D.W. // Surf. Sci. 1994. V. 312. P. L767. https://doi.org/10.1016/0039-6028(94)90719-6
  11. Magkoev T.T., Christmann K., Moutinho A.M.C., Murata Y. // Surf. Sci. 2002. V. 515. P. 538. https://doi.org/10.1016/S0039-6028(02)01972-6
  12. Venables J.A. Introduction to Surface and Thin Films Processes. Cambridge: Univ. Press, 2010. 372 p. ISBN: 9780511755651. https://doi.org/10.1017/CBO9780511755651
  13. Baumer M., Freund H.-J. // Progr. Surf. Sci. 1999. V. 61. P. 127. https://doi.org/10.1016/S0079-6816(99)00012-X
  14. Grigorkina G.S., Zaalishvili V.B., Burdzieva O.G., Fukutani K., Magkoev T.T. // Solid State Commun. 2018. V. 276. P. 28. https://doi.org/10.1016/j.ssc.2018.04.001
  15. Magkoev T.T. // Vacuum. 2021. V. 189. P. 110220. https://doi.org/10.1016/j.vacuum.2021.110220
  16. García A., Papior N., Akhtar A., Artacho E., Blum V., Bosoni E., Brandimarte P., Brandbyge M., Cerdá J.I., Corsetti F., Cuadrado R., Dikan V., Ferrer J., et al. // J. Chem. Phys. 2020. V. 152. P. 204108. https://doi.org/10.1063/5.0005077
  17. Larsen A.H., Mortensen J.J., Blomqvist J., Castelli I.E., Christensen R., Dułak M., Friis J., Groves M.N., Hammer B., Hargus C., et al. // J. Phys.: Condens. Matter. 2017. V. 29. P. 273002. https://doi.org/10.1088/1361-648X/aa680e
  18. Fischer T.H., Almlof J. // J. Phys. Chem. 1992. V. 96. P. 9768. https://doi.org/10.1021/j100203a036
  19. Hammer B., Hansen L.B., Nørskov J.K. // Phys. Rev. B. 1999. V. 59. P. 7413. https://doi.org/10.1103/PhysRevB.59.7413
  20. Van Setten M.J., Giantomassi M., Bousquet E., Verstraete M.J., Hamann D.R., Gonze X., Rignanese G.M. // Computer Phys. Commun. 2018. V. 226. P. 39. https://doi.org/10.1016/j.cpc.2018.01.012
  21. Blum V., Gehrke R., Hanke F., Havu P., Havu V., Ren X., Reuter K., Scheffler M. // Computer Phys. Commun. 2009. V. 180. P. 2175. https://doi.org/10.1016/j.cpc.2009.06.022
  22. Havu V., Blum V., Havu P., Scheffler M. // J. Comp. Phys. 2009. V. 228. P. 8367. http://dx.doi.org/10.1016/j.jcp.2009.08.008
  23. Marek A., Blum V., Johanni R., Havu V., Lang B., Auckenthaler T., Heinecke A., Bungartz H.J., Lederer H. // J. Phys.: Condens. Matter. 2014. V. 26. P. 213201. http://dx.doi.org/10.1088/0953-8984/26/21/213201
  24. Yu V.W., Corsetti F., García A., Huhn W.P., Jacquelin M., Jia W., Lange B., Lin L., Lu J., Mi W., Seifitokaldani A., Vázquez-Mayagoitia A., Yang C., Yang H., Blum V. // Computer Phys. Commun. 2018. V. 222. P. 267. https://doi.org/10.1016/j.cpc.2017.09.007
  25. Yu M., Trinkle D.R. // J. Chem. Phys. 2011. V. 134. P. 064111. https://doi.org/10.1063/1.3553716
  26. Henkelman G., Arnaldsson A., Jónsson H. // Comput. Mater. Sci. 2006. V. 36. P. 354. https://doi.org/10.1016/j.commatsci.2005.04.010
  27. Monkhorst H.J., Pack J.D. // Phys. Rev. B. 1976. V. 13. P. 5188. https://doi.org/10.1103/PhysRevB.13.5188
  28. Xu H., Chu W., Sun W., Jiang C., Liu Z. // RSC Adv. 2016. V. 6. P. 96545. https://doi.org/10.1039/C6RA14009B
  29. Gajdoš M., Hafner J., Eichler A. // J. Phys.: Condens. Matter. 2006. V. 18. P. 13. http://dx.doi.org/10.1088/0953-8984/18/1/002
  30. Chen J.G., Erley W., Ibach H. // Surf. Sci. 1989. V. 224. P. 215. https://doi.org/10.1016/0039-6028(89)90911-4
  31. Demir S., Fellah M.F. // Surf. Sci. 2020. V. 701. P. 121689. https://doi.org/10.1016/j.susc.2020.121689
  32. Beniya A., Isomura N., Hirata H., Watanabe Y. // Surf. Sci. 2013. V. 613. P. 28. https://doi.org/10.1016/j.susc.2013.03.001
  33. Blyholder G. // J. Phys. Chem. 1964. V. 68. P. 2772. https://doi.org/10.1021/j100792a006
  34. Aizawa H., Tsuneyuki S. // Surf. Sci. 1998. V. 399. P. L364. https://doi.org/10.1016/S0039-6028(98)00042-9
  35. Wimmer E., Fu C.L., Freeman A.J. // Phys. Rev. Lett. 1985. V. 55. P. 2618. https://doi.org/10.1103/PhysRevLett.55.2618
  36. Jennison D.R., Verdozzi C., Schultz P.A., Sears M.P. // Phys. Rev. B. 1999. V. 59. P. R15605. https://doi.org/10.1103/PhysRevB.59.R15605
  37. Mattsson A.E., Jennison D.R. // Surf. Sci. 2002. V. 520. P. L611. https://doi.org/10.1016/S0039-6028(02)02209-4
  38. Gajdoš M., Hafner J., Eichler A. // J. Phys.: Condens. Matter. 2005. V. 18. P. 41. http://dx.doi.org/10.1088/0953-8984/18/1/003
  39. Fornari C.I., Fornari G., Rappl P.H.O., Abramof E., Travelho J. Monte Carlo Simulation of Epitaxial Growth. // Epitaxy. / Ed. Zhong M. Norderstedt, Germany: BoD–Books on Demand, 2018. P. 113. http://dx.doi.org/10.5772/intechopen.70220

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).