Surface Modification of Commercially Pure Titanium by Combining Plasma Electrolytic Carburizing, Polishing and Micro Arc Oxidation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The possibility of combining plasma electrolytic carburizing, polishing and micro-arc oxidation of commercially pure titanium to increase microhardness, wear resistance and quality of the modified surface has been demonstrated. Using X-ray structural analysis methods, structural and phase changes on the surface and in surface layers after processing were studied, solid titanium carbides TiC and Ti8C5 were detected in the modified layer, and the diffusion depth of carbon and oxygen was determined. The influence of each of the plasma electrolytic treatment methods on the tribological behavior in a friction pair with structural bearing steel was studied. The lowest surface friction coefficient is observed after carburizing at 900°C, polishing at 250 V and micro-arc oxidation at a current density of 12 A/dm2. It was determined that an increase in the loss of mass during friction and the volume of removed material after combined treatment is associated with an increase in the contact area in the tribocoupling, which is confirmed by an increase in the wear of the counterbody. The quality of the modified surface was assessed based on the geometry data on the surface of wear marks, the complex Kragelsky–Kombalov criterion was calculated, and the type of wear was determined. The Kragelsky–Kombalov criterion after plasma-electrolytic treatment decreases by 1.2–1.4 times, which indicates an increase in the bearing capacity of the rough profile of modified samples. The wear mechanism is fatigue wear during plastic deformation of the tribological conjugation.

About the authors

I. V. Tambovskyi

Moscow State University of Technology “STANKIN”; Kostroma State University

Email: ivan.vt@itambovskiy.ru
Moscow, Russia; Kostroma, Russia

I. A. Kusmanova

Moscow State University of Technology “STANKIN”; Kostroma State University

Moscow, Russia; Kostroma, Russia

S. A. Kusmanov

Moscow State University of Technology “STANKIN”; Kostroma State University

Email: sakusmanov@yandex.ru
Moscow, Russia; Kostroma, Russia

T. L. Mukhacheva

Moscow State University of Technology “STANKIN”; Kostroma State University

Moscow, Russia; Kostroma, Russia

A. O. Komarov

Moscow State University of Technology “STANKIN”

Moscow, Russia

M. V. Ilyinskaya

Kostroma State University

Kostroma, Russia

M. I. Tambovskaya

Moscow State University of Technology “STANKIN”

Moscow, Russia

Ya. R. Meleshkin

Moscow State University of Technology “STANKIN”

Moscow, Russia

V. A. Gaponov

Moscow State University of Technology “STANKIN”

Moscow, Russia

V. I. Morozov

Moscow State University of Technology “STANKIN”

Moscow, Russia

A. E. Tkachenko

Moscow State University of Technology “STANKIN”

Moscow, Russia

S. N. Grigoriev

Moscow State University of Technology “STANKIN”

Moscow, Russia

References

  1. Yin F., Ma Sh., Hu Sh., Liu Ya., Hua L., CHENG G.J. // Mater. Sc. Eng. 2023. V. 869. P. 144815. https://www.doi.org/org/10.1016/j.msea.2023.144815
  2. Wu C.W., Huang C.G., Chen G.N., Wang M.X. // Opt. Las. Techol. 2013. V. 45. Iss. 1. P. 558. https://www.doi.org/10.1016/j.optlastec.2012.05.032
  3. Mahmoodian R., Annuar N.S.M., Razak B.A., Sparham M., Faraji G., Bahar N.D. // J. Min. Met. Mater. Soc. 2019. V. 71. Iss. 1. P. 256. https://www.doi.org/10.1007/s11837-017-2672-4
  4. Karimi M., Bozorg M. // Mater. Chem. Phys. 2022. V. 290. P. 126634. https://www.doi.org/10.1016/j.matchemphys.2022. 126634
  5. Valiev R.Z., Estrin Y., Horita Z., Langdon T.G., Zehetbauer M.J., Zhu Y.T. // Mater. Res. Lett. 2015. V. 4. P. 1 https://www.doi.org/10.1080/21663831.2015.1060543
  6. Суслов А.Г. Инженерия поверхности деталей. М.: Машиностроение, 2008. 320 с.
  7. Matsuura K., Kudoh M. // Act. Mater. 2002. V. 50. Iss. 10. P. 2693. https://www.doi.org/10.1016/S1359-6454(02)00102-7
  8. Castagnet M., Yogi L.M., Silva M.M., Ued M., Couto A.A., Reis D.A.P., Moura Neto C. // Mater. Sci. Forum. 2012. V. 727–728. P. 50. https://www.doi.org/10.4028/www.scientific.net/MSF.727-728.50
  9. Budzynski P., Youssef A.A., Sielanko J. // Wear. 2006. V. 261. P. 1271. https://www.doi.org/10.1016/j.wear.2006.03.008
  10. Dong Y.-X., Chen Y.-S., Chen Q., Liu B., Song Z.-X. // Surf. Coat. Technol. 2007. V. 201. P. 8789. https://www.doi.org/10.1016/j.surfcoat.2007.05.097
  11. Belkin P.N., Kusmanov S.A., Belkin V.S., Parfenyuk V.I. // Mater. Sci. Forum. 2016. V. 844. P. 125. https://www.doi.org/10.4028/www.scientific.net/msf.844.125
  12. Aliofkhazraei M., Taheri P., Sabour Rouhaghdam A., Dehghanian C. // Mater. Sci. 2007. V. 43. P. 791. https://www.doi.org/10.1007/s11003-008-9024-z
  13. Kusmanov S.A., Tambovskii I.V., Korableva S.S., Mukhacheva T.L., D’yakonova A.D., Nikiforov R.V., Naumov A.R. // Surf. Eng. Appl. Electrochem. 2022. V. 58. Iss. 5. P. 451. https://www.doi.org/10.3103/S1068375522050088
  14. Aliofkhazraei M., Sabour Rouhaghdam A., Sabouri M. // J. Mater. Sci. 2008. V. 43. P. 1624. https://www.doi.org/10.1007/s10853-007-2323-1
  15. Kusmanov S., Kusmanova I., Tambovskiy I., Belkin P., Parfenyuk V. // Surf. Eng. 2019. V. 35(3). P. 199. https://www.doi.org/10.1080/02670844.2017.1411422
  16. Belkin P.N., Tambovskiy I.V., Korableva S.S., Silkin S.A., Kusmanov S.A. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2018. V. 12. № 3. P. 507. https://www.doi.org/10.1134/S1027451018030060
  17. Qin Y., Xiong D., Li J., Tyagi R. // Tribol. Int. 2015. V. 82. P. 543. https://www.doi.org/10.1016/j.triboint.2014.07.023
  18. Aliev M.K., Sabour A., Taheri P. // Prot. Met. 2008. V. 44. P. 618. https://doi.org/10.1134/S0033173208060155
  19. Tambovskiy I.V., Kusmanov S.A., Korableva S.S., Silkin S.A., Sevostyanov N.V., Komissarova M.R., Belkin P.N. // Surf. Eng. Appl. Electrochem. 2017. V. 53. Iss. 5. P. 407. https://www.doi.org/10.3103/S1068375517050131
  20. Kusmanov S.A., Tambovskiy I.V., Silkin S.A., Kusmanova I.A., Belkin P.N. // Surf. Inter. 2020. Vol. 21. P. 100717. https://www.doi.org/10.1016/j.surfin.2020.100717
  21. Tambovskiy I.V., Kusmanov S.A., Mukhacheva T.L., Krit B.L., Suminov I.V., Khmyrov R.S., Palenov I.R., Vdovichenko R.A., Morozov V.I. // Rus. Metal. 2023. V. 5. P. 572 https://www.doi.org/10.1134/S0036029523050117
  22. Gaysin A.F., Gilmutdinov A.K. // Inorg. Mater. Appl. Res. 2021. V. 12. P. 633. https://www.doi.org/10.1134/S2075113321030102
  23. Tamindarov D.R., Smyslov A.M., Sidelnikov A.V. // Inorg. Mater. Appl. Res. 2023. V. 14. P. 732. https://www.doi.org/10.1134/S2075113323030437
  24. Yang D., Sun H., Ji G., Xiang Y., Wang J. // Coatings. 2024. V. 14. P. 615. https://www.doi.org/10.3390/coatings14050615
  25. Lv Zh., Wang L., Hu X., Bu Zh., Li Yu. // Inter. J. Electrochem. Sci. 2024. V. 19. Iss. 9. P. 100749. https://www.doi.org/10.1016/j.ijoes.2024.100749
  26. Navickaitė K., Nestler K., Böttger-Hiller F., Matias C., Diskin A., Golan Oz., Garkun A., Strokin E., Biletskiy R., Safranchik D., Zeidler H. // Proc. CIRP. 2022. V. 108. P. 346. https://www.doi.org/10.1016/j.procir.2022.03.057
  27. Smyslova M.K., Valiev R.R., Smyslov A.M., Modina I.M., Sitdikov V.D., Semenova I.P. // Metals. 2021. V. 11. P. 696. https://www.doi.org/10.3390/met11050696
  28. Nestler B.K., Böttger-Hiller F., Adamitzki W., Glowa G., Zeidler H. Schubert A. // Proc. CIRP. 2016. V. 42. P. 503. https://www.doi.org/10.1016/j.procir.2016.02.240
  29. Laurindo C.A.H., Bemben L.M., Torres R.D., Mali S.A., Gilbert J.L., Soares P. // Mater. Technol. 2016. V. 31(12). P. 719. https://www.doi.org/10.1080/10667857.2016.1227895
  30. Marques I.D.S.V., Barão V.A.R., Mesquita M.F., Da Cruz N.C., Yuan J.C.C., Sukotjo C., Ricomini-Filho A.P., Mathew M.T. // Corr. Sci. 2015. V. 100. P. 133. https://www.doi.org/10.1016/j.corsci.2015.07.019
  31. Hariprasad S., Ashfaq M., Arunnellaiappan T., Harilal M. Rameshbabu N. // Surf. Coat. Technol. 2016. V. 292. P. 20. https://www.doi.org/10.1016/j.surfcoat.2016.03.016
  32. Venkateswarlu K., Rameshbabu N., Sreekanth D., Bose A.C, Muthupandi V., Subramanian S. // Ceram. Int. 2013. V. 39. P. 801. https://www.doi.org/10.1016/j.ceramint.2012.07.001
  33. Grigoriev S., Peretyagin N., Apelfeld A., Smirnov A., Rybkina A., Kameneva E., Zheltukhin A., Gerasimov M., Volosova M., Yanushevich O., et al. // J. Compos. Sci. 2023. V. 7. P. 142. https://www.doi.org/10.3390/jcs7040142
  34. Bogdashkina N.L., Gerasimov M.V., Zalavutdinov R.K., Kasatkina I.V., Krit B.L., Lyudin V.B., Fedichkin I.D., Shcherbakov A.I., Apelfeld A.V. // Surf. Eng. Appl. Electrochem. 2018. V. 54. P. 331. https://www.doi.org/10.3103/S106837551804004X
  35. Bordbar-Khiabani A., Ebrahimi S., Yarmand B. // Appl. Surf. Sci. 2019. V. 486. P. 153. https://www.doi.org/10.1016/j.apsusc.2019.05.026
  36. Grigoriev S., Peretyagin N., Apelfeld A., Smirnov A., Morozov A., Torskaya E., Volosova M., Yanushevich O., Yarygin N., Krikheli N., Peretyagin P. // Materials. 2023. V. 16. P. 3928. https://www.doi.org/10.3390/ma16113928
  37. Wang Q., Song P., Niu W., Li N., Hu N. // Materials. 2024. V. 17. P. 2544. https://www.doi.org/10.3390/ma17112544
  38. Tambovskiy I.V., Vdovichenko R.A., Belov R.D. Dyakonova A.D., Nikiforov R.V., Silkin S.A., Kusmanova I.A. // J. Phys.: Conf. Series. 2021. V. 2144. P.012033. https://www.doi.org/10.1088/1742-6596/2144/1/012033
  39. Kusmanov S., Mukhacheva T., Tambovskiy I., Kusmanova I., Shadrin S., Belov R., Nikiforov R., Suminov I., Karasev M., Grigoriev S. // Coatings. 2023. V. 13. P. 1363. https://www.doi.org/10.3390/coatings13081363
  40. Kusmanov S., Tambovskiy I., Silkin S., Nikiforov R., Belov R. // Materials. 2023. V. 16. P. 1102. https://www.doi.org/10.3390/ma16031102
  41. Volosova M.A., Kusmanov S.A., Tambovskiy I.V., Mukhacheva T.L., Mitrofanov A.P., Suminov I.V., Grigoriev S.N. // Surfaces. 2024. V. 7. P. 824. https://www.doi.org/10.3390/surfaces7040054
  42. Суминов И.В., Эпельфельд А.В., Людин В.Б., Крит Б.Л., Борисов А.М. Микродуговое оксидирование (теория, технология, оборудование). М.: ЭКОМЕТ, 2005. 368 с.
  43. Kragelsky I.V., Dobychin M.N., Kombalov V.S. Friction and wear calculation methods. Oxford: Pergamon Press, 1982. P. 62.
  44. Mukhacheva T., Kusmanov S., Suminov I., Podrabinnik P., Khmyrov R., Grigoriev S. // Metals. 2022. V. 12. P. 1641. https://www.doi.org/10.3390/met12101641

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).