On Determination of Diffusion Coefficient of an Inclusion Attached to a Fixed Dislocation Using Its Thermal Motion Trajectory

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In situ transmission electron microscopy observations showed that one or more liquid Pb nanoinclusions attached to fixed dislocation segment in an Al matrix exhibit quasi-one-dimensional thermal motion localized near the dislocation line as fixed segments are traps for the nanoinclusions. The use of longitudinal component of the trajectories of their thermal motion makes it possible to determine the diffusion coefficients of individual nanoinclusions in a wide range of temperatures and sizes. To determine the diffusion coefficients, the root–mean-square displacement of a one-dimensional Brownian oscillator under the action of a linear restoring force as a function of movement time, obtained by M. Smoluchowski, was used. However, this expression does not quite correctly describe the thermal motion of an inclusion attached to a dislocation segment fixed at its ends as this expression does not take into account the deceleration of inclusion near its fixed ends that leads to underestimation of the value of diffusion coefficient of the inclusion. In the present work, this equation is modified. The application of the modified equation demonstrates that it quite better describes the behavior of experimental dependences of a root mean squared displacement of liquid Pb nanoinclusions attached to fixed dislocation segments in Al matrix on movement time, than the equation used before. This made it possible to significantly increase the accuracy of determination of diffusion coefficients of the nanoinclusions.

Авторлар туралы

S. Prokofjev

Osipyan Institute of Solid–State Physics RAS

Хат алмасуға жауапты Автор.
Email: prokof@issp.ac.ru
Chernogolovka, Russia

Әдебиет тізімі

  1. Prokofjev S., Zhilin V., Johnson E., Levinsen M., Dahmen U. // Def. Diff. Forum. 2005. V. 237–240. Part II. P. 1072. https://www.doi.org/10.4028/www.scientific.net/ddf.237-240.1072
  2. Johnson E., Prokofiev S., Zhilin V., Dahmen U. // Z. Metallkd. 2005. V. 96. № 10. P. 1171. https://www.doi.org/10.1515/ijmr-2005-0202
  3. McAlister A.J. // Bull. Alloy Ph. Diagrams. 1984. V. 5. № 1. P. 69. https://www.doi.org/10.1007/BF02868728
  4. Прокофьев С.И., Жилин В.М., Johnson E., Dahmen U. // Изв. РАН: Сер. физическая. 2007. Т. 71. № 12. С. 1705.
  5. Prokofjev S.I., Zhilin V.M., Johnson E., Dahmen U. // Def. Diff. Forum. 2007. V. 264. P. 55. https://www.doi.org/10.4028/3-908451-41-8.55
  6. Prokofjev S.I., Johnson E. // J. Phys. Commun. 2017. V. 1. № 5. P. 055001. https://www.doi.org/10.1088/2399-6528/aa97c4
  7. Prokofjev S.I., Johnson E. // Phil. Mag. 2023. V. 103. № 1. P. 1. https://www.doi.org/10.1080/14786435.2022.2118383
  8. Prokofjev S.I. // Commun. Nonlinear Sci. Numer. Simulat. 2024. V. 137. № 10. P. 108159. https://www.doi.org/10.1016/j.cnsns.2024.108159
  9. Prokofjev S.I., Zhilin V.M., Johnson E., Dahmen U. // J. Mater. Sci. 2008. V. 43. P. 3894. https://www.doi.org/10.1007/s10853-007-2409-9
  10. Прокофьев С.И., Johnson E., Жилин В.М., Dahmen U. // Материаловедение. 2010. № 5 (138). C. 2.
  11. Johnson E., Andersen H.H., Dahmen U. // Microsc. Res. Techn. 2004. V. 64. P. 356. https://www.doi.org/10.1002/jemt.20097
  12. Dahmen U., Radetic T., Turner J., Prokofiev S., Levinsen M.T., Johnson E. // Microsc. Microanal. 2002. V. 8. P. 1426.
  13. Radetic T., Johnson E., Olmsted D.L., Yang Y., Laird B.B., Asta M., Dahmen U. // Acta Mater. 2017. V. 14. P. 427. https://www.doi.org/10.1016/j.actamat.2017.09.040
  14. Prokofjev S.I., Johnson E., Zhilin V.M., Dahmen U. // Adv. Sci. Technol. 2006. V. 46. P. 98. https://www.doi.org/10.4028/www.scientific.net/AST.46.98
  15. Johnson E., Levinsen M.T., Steenstrup S., Prokofiev S., Zhilin V., Dahmen U., Radetic T. // Phil. Mag. 2004. V. 84. № 25–26. P. 2663. https://www.doi.org/10.1080/14786430410001671412
  16. Johnson E., Steenstrup S., Levinsen M., Prokofiev S.I., Zhilin V., Dahmen U. // J. Mater. Sci. 2005. V. 40. № 12. P. 3115. https://www.doi.org/10.1007/s10853-005-2672-6
  17. Smoluchowski M. // Bull. Int. de l’Acad. de Cracovie A. 1913. P. 418.
  18. Smoluchowski M. // Sitzungsber. Kais. Akad. Wissensch. Wien (IIa). 1914. B. 123. S. 2381.
  19. Einstein A. // Ann. d. Phys. 1905. B. 17. S. 549.
  20. Wright R.N., van Stelen C.D. // J. Nucl. Mater. 1993. V. 206. P. 87. https://www.doi.org/10.1016/0022-3115(93)90237-S
  21. Ono K., Furuno S., Kanamito S., Hojou K. // Phil. Mag. Lett. 1997. V. 75. № 2. P. 59. https://www.doi.org/10.1080/095008397179750

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).