Experimental Observation of the Transition from Two-Dimensional Turbulent Vortex Flow of Water to Three-Dimensional

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It has been experimentally shown that an increase in the water depth from 2 to 4 cm leads to a transition from two-dimensional turbulence to three-dimensional. Waves with a frequency of 6 Hz (wavelength λ = 5.6 cm), propagating on the water surface, generate vortex flows penetrating into the water volume. The experiments show that in "shallow" water with a depth of h = 2 cm, the vortex flow is homogeneous and quasi-two-dimensional: the vertical velocity component of tracer particles is zero, and the vorticity vector is oriented vertically. In "deep" water (h = 4 cm), a developed three-dimensional chaotic liquid motion is observed: the water layers are mixed due to solenoidal flows with both vertical and horizontal velocity components. Vortices in the fluid interact with surface flows, leading to an increase in their energy. As a result of this interaction, the energy of surface vortices, E(t), after turning off the pump demonstrates a non-monotonic dependence on the time, which differs from the exponential decay characteristic of shallow water.

About the authors

A. V Poplevin

Oshyan Institute of Solid State Physics RAS

Author for correspondence.
Email: faraldos@issp.ac.ru
Chernogolovka, Russia

A. A Levchenko

Oshyan Institute of Solid State Physics RAS

Email: faraldos@issp.ac.ru
Chernogolovka, Russia

A. M Likhter

Tatishehev Astrakhan State University

Email: faraldos@issp.ac.ru
Astrakhan, Russia

S. V Filatov

Oshyan Institute of Solid State Physics RAS

Email: faraldos@issp.ac.ru
Chernogolovka, Russia

L. P Mezhov-Deglin

Oshyan Institute of Solid State Physics RAS

Email: faraldos@issp.ac.ru
Chernogolovka, Russia

References

  1. Monin A.S., Yaglom A.M. Statistical Fluid Mechanics. Vol. 1. Cambridge: MIT Press, 1971.
  2. Townsend A.A. The Structure of Turbulent Shear Flow. Cambridge University Press, 1956. 315 p. https://doi.org/10.1017/S0022112056210366
  3. Falceta-Gonçalves D. Interstellar Turbulence. arXiv:1102.0253 [astro-ph.GA]. 2011. 15 p.
  4. Hossain M., Matthaeus W.H., Montgomery D. // J. Plasma Phys. 1983. V. 30. P. 479. https://doi.org/10.1017/S0022377800001306
  5. L’vov V.S., Nazarenko S., Rudenko O. // Phys. Rev. B. 2007. V. 76. P. 024520. https://doi.org/10.1103/PhysRevB.76.024520
  6. Zakharov V.E., L’vov V.S. // Sov. Phys. JETP. 1971. V. 33. P. 1113. http://www.jetp.ras.ru/cgi-bin/index/e/33/6/p1113?a=list
  7. Shats M., Francois N., Xia H., Purzmann H. // Int. J. Mod. Phys. Conf. Ser. 2014. V. 34. P. 1460379. https://doi.org/10.1142/S2010194514603792
  8. Von Kameke A., Huhn F., Fernández-García G., Muñuzuri A.P., Pérez-Muñuzuri V. // Phys. Rev. Lett. 2011. V. 107. P. 074502. https://doi.org/10.1103/PhysRevLett.107.074502
  9. Filatov S.V., Parfenyev V.M., Vergeles S.S., Brazhnikov M.Y., Levchenko A.A., Lebedev V.V. // Phys. Rev. Lett. 2016. V. 116. P. 054501. https://doi.org/10.1103/PhysRevLett.116.054501
  10. Filatov S.V., Khramov D.A., Levchenko A.A. // JETP Lett. 2017. V. 106. P. 330. https://doi.org/10.7868/S0370274X1717009X
  11. Filatov S.V., Poplevin A.V., Likhter A.M., Korolev O.G., Serbin V.I., Rybakov A.V., Tumachev D.D., Levchenko A.A. // J. Surf. Invest.: X-Ray, Synchrotron, Neutron Tech. 2022. V. 16. P. 1135. https://doi.org/10.1134/S1027451022060374
  12. Poplevin A.V., Levchenko A.A., Likhter A.M., Filatov S.V., Mezhov-Deglin L.P. // J. Surf. Invest.: X-Ray, Synchrotron, Neutron Tech. 2024. V. 18. P. 717. https://doi.org/10.1134/S1027451024700368
  13. Parfenyev V.M., Filatov S.V., Brazhnikov M.Yu., Vergeles S.S., Levchenko A.A. // Phys. Rev. Fluids. 2019. V. 4. P. 114701. https://doi.org/10.1103/PhysRevFluids.4.114701
  14. Filatov S.V., Aliev S.A., Levchenko A.A., Khramov D.A. // JETP Lett. 2016. V. 104. № 10. P. 702. https://doi.org/10.1134/S0021364016220082
  15. Thielicke W., Stamhuis E. // J. Open Res. Soft. 2014. V. 2. P. e30. http://dx.doi.org/10.5334/jors.b1
  16. Филанов С.В., Левченко А.А., Браженков М.Ю., Межов-Делан А.П. // Приборы и техника эксперимента. 2018. № 4. C. 1. https://doi.org/10.1134/S0032816218040201
  17. Фриш У. Турбулентность. Наследие А.Н. Колмогорова. М.: Регулярная и хаотическая динамика, 2001. 450 с.
  18. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 6. Гидродинамика. М.: Физматлит, 2003. 736 с.
  19. Xia H., Francois N. // Phys. Fluids. 2017. V. 29. P. 111107. https://doi.org/10.1063/1.5000863

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).