On Clustering in Real Cottrell Nanosegregations in Metallic Materials

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

By analyzing some known data of 3D atomic force microscopy for metallic materials and a number of other theoretical and experimental results, including data on the "dislocation" dissolution of cementite in pearlitic and martensitic steels, clustering in real Cottrell "atmospheres" (nanosegregations) is considered and their characteristics (including the number of impurity atoms per dislocation of atomic length) are determined, which differ significantly from the classical theoretical models. In particular, Cottrell boron nanosegregations on edge dislocations in an ordered intermetallic compound FeAl containing 40 at. % Al and 0.04 at. % B, as well as Cottrell carbon nanosegregations on screw dislocations in martensitic steel are considered. The presence of Fe3B and Fe3C type clustering in such nanosegregations, which is not taken into account in the framework of the classical models of Cottrell's "atmospheres" ("clouds"), is shown. It is shown that in metallic materials (FeAl–B, Fe–C, Al–Fe, Pd–H) in real "atmospheres" (nanosegregations) on dislocations a certain clustering takes place (including the formation of bordde-like, carbide-like, intermetallic-like and hydride-like structures), which differs from the classical theoretical models of Cottrell's "atmospheres". In particular, the methodology for determining the impurity diffusion coefficient in the areas of nanosegregations on dislocations in metallic materials is considered (using the Pd–H, Al–Fe, Fe–C systems as an example).

Sobre autores

Yu. Nechaev

Scientific Center of Metals Science and Physics, Bardin Central Research Institute for Ferrous Metallurgy

Autor responsável pela correspondência
Email: yuri1939@inbox.ru
Moscow, Russia

N. Shurygina

Scientific Center of Metals Science and Physics, Bardin Central Research Institute for Ferrous Metallurgy; Russian Technological University MIREA

Email: yuri1939@inbox.ru
Moscow, Russia; Moscow, Russia

A. Cheretaeva

Institute of Progressive Technologies, Togliatti State University

Email: yuri1939@inbox.ru
Togliatti, Russia

V. Filippova

Scientific Center of Metals Science and Physics, Bardin Central Research Institute for Ferrous Metallurgy

Email: yuri1939@inbox.ru
Moscow, Russia

Bibliografia

  1. Marquis E. A., Hyde J. M. // Mater. Sci. Eng. R. 2010. V. 69. P. 37. https://doi.org/10.1016/j.mser.2010.05.001
  2. Pareige P., Cadel E., Sauvage X., Deconthout B., Blavette D., Mangelinck D. // Int. J. Nanotechnol. 2008. V. 5. P. 592. https://doi.org/10.1504/IJNT.2008.018684
  3. Blavette D., Duguay S. // Eur. Phys. J. Appl. Phys. 2014. V. 68. P. 10101. https://doi.org/10.1051/epjap/2014140060
  4. Herbig M., Choi P., Raabe D. // Ultramicroscopy. 2015. V. 153. P. 32. http://dx.doi.org/10.1016/j.ultramic.2015.02.003
  5. Blavette D., Cadel E., Fraczkiewicz A., Menand A. // Science. 1999. V. 286. № 5448. P. 2317. https://doi.org/10.1126/science.286.5448.2317
  6. Cadel E., Lemarchand D., Gay A.-S., Fraczkiewicz A., Blavette D. // Scr. Mater. 1999. V. 41. № 4. P. 421. https://doi.org/10.1016/S1359-6462(99)00106-2
  7. Calonne O., Fraczkiewicz A., Louchet F. // Scr. Mater. 2000. V. 43. № 1. P. 69. https://doi.org/10.1016/S1359-6462(00)00367-5
  8. Cadel E., Launois S., Fraczkiewicz A., Blavette D. // Philos. Mag. Lett. 2000. V. 80. № 11. P. 735. https://doi.org/10.1080/09500830050192945
  9. Blavette D., Fraczkiewicz A., Cadel E. // J. Phys. IV France. 2000. V. 10. № PR6. P. Pr6-111. https://doi.org/10.1051/jp4:2000619
  10. Cadel E., Fraczkiewicz A., Blavette D. // Mater. Sci. Eng. A. 2001. V. 309–310. P. 32. https://doi.org/10.1016/S0921-5093(00)01688-9
  11. Cottrell A.H., Bilby B.A. // Proc. Phys. Soc. A. 1949. V. 62 (1). № 308. P. 49.
  12. Cottrell A.H. Dislocations and Plastic Flow in Crystals. Oxford: Clarendon, 1953. 134 p.
  13. Hirth J.P., Lothe J. Theory of Dislocations. New York: McGraw-Hill, 1968. 780 p.
  14. Wilde J., Cerezo A., Smith G.D.W. // Scr. Mater. 2000. V. 43. № 1. P. 39. https://doi.org/10.1016/S1359-6462(00)00361-4
  15. Kahn R.W. The Coming of Materials Science. Pergamon Materials Series. Cambridge: Cambridge Univ. Press, 2001. 568 p.
  16. Baauen P.S., Добаткин С.В., Sauvage X. // Тр. Международный. “Нанотехнологии и наноматериалы в металлургии”. Москва, 26–27 марта 2008 г. (ГНЦ РФ ФГУП “ЦНИИчермет им. И.П. Бардина”).
  17. Nechaev Y.S., Öchsner A. // Defect Diffus. Forum. 2019. V. 391. P. 246. https://doi.org/10.4028/www.scientific.net/DDF.391.246
  18. Нечаев Ю.С. // УФН. 2008. Т. 178. № 7. С. 709. https://doi.org/10.1070/PU2008v051n07ABEH006570
  19. Нечаев Ю.С. // УФН. 2011. Т. 181. № 5. С. 483. https://doi.org/10.3367/UFNe.0181.201105b.0483
  20. Pokatilov V.S., Pokatilov V.V., Dyakonova N.B. // Bull. Russ. Acad. Sci.: Phys. 2007. V. 71. № 11. P. 1589. https://doi.org/10.3103/S1062873807110366
  21. Vincze I., Boudreaux D.S., Tegze M. // Phys. Rev. B. 1979. V. 19. № 10. P. 4896. https://doi.org/10.1103/PhysRevB.19.4896
  22. Pokatilov V.S., Dyakonova N.B. // Hyperfine Interaction. 1990. V. 59. № 1–4. P. 525. https://doi.org/10.1007/BF02401288
  23. Pokatilov V.S. // Phys. Solid State. 2007. V. 49. № 12. P. 2217. https://doi.org/10.1134/S1063783407120013
  24. Zhang Y.D., Budnick J.I., Ford J.C., Hines W.A. // J. Magn. Magn. Mater. 1991. V. 100. № 1–3. P. 13.
  25. Friedel J. Dislocations. Oxford: Pergamon Press, Addison-Wesley, 1964. 491 p.
  26. Нечаев Ю.С. // Альтернативная энергетика и экология. 2007. Т. 11 (55). С. 108.
  27. Счастливец В.М., Яковлева Н.Л., Мирзеев Д.А., Табашникова Т.Н. // Тр. науч.-практ. семинара “Проблемы старения сталей магистральных трубопроводов”. Нижний Новгород, 23–25 января 2006 г. С. 68.
  28. Шпиренко М.А. Прочность сплавов. Дефекты решетки. М.: Изд-во МИСиС, 1999. 384 с.
  29. Danok F., Julien D., Sauvage X., Copreaux J. // Mater. Sci. Eng. A. 1998. V. 250. № 1. P. 8. https://doi.org/10.1016/s0921-5093(98)00747-3
  30. Sauvage X., Copreaux J., Danok F., Blavette D. // Philos. Mag. A. 2000. V. 80. № 4. P. 781. https://doi.org/10.1080/01418610008212082
  31. Ivanisenko Yu., Lojkowski W., Valiev R.Z., Fecht H.-J. // Acta Mater. 2003. V. 51. № 18. P. 5555. https://doi.org/10.1016/S1359-6454(03)00419-1
  32. Sauvage X., Dacosta G., Valiev R.Z. // Ultrafine Grained Materials III. Warrendale: TMS, 2004. P. 31.
  33. Balak J., Sauvage X., Lee D.-L., Lee C.-Y., Pareige P. // Adv. Mater. Res. 2007. V. 24–25. P. 45.
  34. Gridnev V.N., Gavrilyuk V.G. // Phys. Met. 1982. V. 4. P. 531.
  35. Gridnev V.N., Gavrilyuk V.G., Dekhtyar I.Ya., Meshkov Yu.Ya., Nizin P.S., Prokopenko V.G. // Phys. Stat. Sol. A. 1972. V. 14. № 2. P. 689. https://doi.org/10.1515/9783112496527-036
  36. Gavrilyuk V.G. // Scr. Mater. 2001. V. 45. № 12. P. 1469. https://doi.org/10.1016/S1359-6462(01)01185-X
  37. Gavrilyuk V.G. // Mater. Sci. Eng. A. 2003. V. 345. № 1–2. P. 81. https://doi.org/10.1016/S0921-5093(02)00358-1
  38. Sauvage X., Ivanisenko Y. // J. Mater. Sci. 2007. V. 42. P. 1615. https://doi.org/10.1007/s10853-006-0750-z
  39. Nechaev Yu.S. // Defect Diffus. Forum. 2006. V. 251–252. P. 111. https://doi.org/10.4028/www.scientific.net/DDF.251-252.111
  40. Nechaev Yu.S. // Solid State Phenomena. 2008. V. 138. P. 91. https://doi.org/10.4028/www.scientific.net/SSP.138.91
  41. Нечаев Ю.С. // УФН. 2001. Т. 171. № 11. С. 1251. https://doi.org/10.3367/UFNr.0171.200111e.1251

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).