Characterization of Prior Austenite of Martensitic and Bainitic Steels Based on Transformation Texture Analysis

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The crystallographic texture of bainitic and martensitic steels determined at room temperature is related to the texture of the prior austenite owing to the orientation relationship between the parent and daughter phases. This allows, in particular, judging the deformation of austenite and recrystallization. It becomes possible to analyze the effect of hot rolling on the austenite structural state, which precedes quenching. The structures and textures of bainitic and martensitic steels have been analyzed using electron backscatter diffraction. In the case of single-pass rolling, the state of prior austenite can be estimated based on the morphology of austenite grains reconstructed on the basis of the electron diffraction data. In the case of multi-pass hot rolling, which proceeds with a gradual decrease in temperature, such an estimate is difficult due to peculiarities of structure development. At the same time, this can be performed based on of the analysis of crystallographic texture of steel. As a quantitative characteristic of the structural state of austenite, a scalar parameter is proposed that depends on the relative intensity of texture components formed during the phase transformation.

Авторлар туралы

A. Zisman

Peter the Great St. Petersburg Polytechnic University

Email: zolotorevsky@phnf.spbstu.ru
St. Petersburg, Russia

N. Zolotorevsky

Peter the Great St. Petersburg Polytechnic University

Хат алмасуға жауапты Автор.
Email: zolotorevsky@phnf.spbstu.ru
St. Petersburg, Russia

A. Matvienko

Peter the Great St. Petersburg Polytechnic University

Email: zolotorevsky@phnf.spbstu.ru
St. Petersburg, Russia

S. Petrov

Peter the Great St. Petersburg Polytechnic University

Email: zolotorevsky@phnf.spbstu.ru
St. Petersburg, Russia

Әдебиет тізімі

  1. Brown E.L., Deardo A.J. // Metall. Mater. Trans. A. 1981. V. 12. P. 39. https://doi.org/10.1007/BF02648506
  2. Zhao H., Palmiere E. // Mater. Charact. 2019. V. 158. P. 109990. https://doi.org/10.1016/j.matchar.2019.109990
  3. Collins J., Taylor M., Scarlett A.L., Palmiere E.J., Pickering E.J. // Mater. Charact. 2024. V. 208. P. 113656. https://doi.org/10.1016/j.matchar.2024.113656
  4. Ghorabaei A., Nili-Ahmadabad M. // Mater. Sci. Eng. A. 2021. V. 815. P. 141300. https://doi.org/10.1016/j.msea.2021.141300
  5. Taylor M., Smith A.D., Donoghue J.M., Burnett T.L., Pickering E.J. // Scr. Mater. 2024. V. 242. P. 115924. https://doi.org/10.1016/j.scriptamat.2023.115924
  6. Miyamoto G., Iwata N., Takayama N., Furuhara T. // Acta Mater. 2010. V. 58. P. 6393. https://doi.org/10.1016/j.actamat.2010.08.001
  7. Germain L., Gey N., Humbert M. // Scr. Mater. 2019. V. 158. P. 91. https://doi.org/10.1016/j.scriptamat.2018.08.042
  8. Brust A., Payton E., Hobbs T., Sinha V., Yardley V., Niezgoda S. // Microsc. Microanal. 2021. V. 27. P. 1035. https://doi.org/10.1017/S1431927621012484
  9. Fernandez-Zelada P., Rossy A.M., Campbell Q., Nycz A., Ledford C., Kirka M.M. // Mater. Charact. 2022. V. 185. P. 111759. https://doi.org/10.1016/j.matchar.2022.111759
  10. Niessen F., Nyyssönen T., Gazder A., Hielscher R.J. // J. Appl. Crystallogr. 2022. V. 55. P. 180. https://doi.org/10.1107/S1600576721011560
  11. Hielscher R., Nyyssönen T., Niessen F., Gazder A. // Materialia. 2022. V. 22. P. 101399. https://doi.org/10.1016/j.mta.2022.101399
  12. Jonas J.J. // Microstructure and Texture in Steels / Eds. A. Haldar et al. New York: Springer, 2009. Ch. 1. P. 3. https://doi.org/10.1007/978-1-84882-454-6
  13. Winkelmann A., Nolze G., Cios G., Tokarski T., Bala P. // Materials. 2020. V. 13. P. 2816. https://doi.org/10.3390/ma13122816
  14. Djair R.A.P., Jonas J.J. // Metall. Trans. 1973. V. 4. P. 621. https://doi.org/10.1007/BF02648720
  15. Petkovic R.A., Luton M.J., Jonas J.J. // Acta Metall. 1979. V. 27. № 10. P. 1633. https://doi.org/10.1016/0001-6160(79)90045-2
  16. Lin X., Zou X., An D., Krakauer B.W., Zhu M. // Materials. 2021. V. 14. P. 2947. https://doi.org/10.3390/ma14112947
  17. Xiao X.D., Zhang Q.Z., Li Y.J., Qiu F.M. // Mater. Sci. Technol. 2023. V. 39. P. 509. https://doi.org/10.1080/02670836.2022.2125201
  18. Qiu C., Xu R., Xu X., Ma S. // Metals. 2024. V. 14. № 8. P. 845. https://doi.org/10.3390/met14080845
  19. Zisman A.A., Petrov S.N., Zolotorevsky N.Y., Yakovleva E.A. // Mater. Phys. Mechan. 2023. V. 51. № 6. P. 54. https://doi.org/10.18149/MPM.5162023_5
  20. Zisman A.A., Zolotorevsky N.Y., Petrov S.N. // Steel Res. Int. 2024. V. 95. P. 2300901. https://doi.org/10.1002/srin.202300901
  21. Kurdjumov G., Sachs Z. // Z. Phys. 1930. V. 64. № 4–6. P. 325. https://doi.org/10.1007/BF01397346
  22. Greninger A.B., Troiano A.R. // JOM. 1949. V. 1. P. 590. https://doi.org/10.1007/BF03398900
  23. Takayama N., Miyamoto G., Furuhara T. // Acta Mater. 2012. V. 60. № 5. P. 2387. https://doi.org/10.1016/j.actamat.2011.12.018
  24. Tamura I., Tsuzaki K., Maki T. // J. Phys. Colloque. 1982. V. 43. № C4. P. 551. https://doi.org/10.1051/jphyscol:1982486
  25. Miyamoto G., Iwata N., Takayama N., Furuhara T. // Acta Mater. 2012. V. 60. P. 1139. https://doi.org/10.1016/j.actamat.2011.11.018
  26. Morito S., Saito H., Ogawa T., Furuhara T., Maki T. // ISIJ Int. 2005. V. 45. P. 91. https://doi.org/10.2355/isijinternational.45.91
  27. Ardehali Barani A., Li F., Romano P., Ponge D., Raabe D. // Mater. Sci. Eng. A. 2007. V. 463. P. 138. https://doi.org/10.1016/j.msea.2006.08.124
  28. Humphreys F.J., Hatherly M. Recrystallization and Related Annealing Phenomena. Pergamon: Elsevier Science Ltd, 2004. https://doi.org/10.1016/B978-0-08-044164-1.X5000-2

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).