Rotating Water-Jet-Cooled Target for Compact Neutron Source

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Compact neutron sources, including those based on bombardment of beryllium by a proton beam (for instance, DARIA project), assume using of targets with high thermal loading (~10 kW). To dissipate this heating power, we previously developed a concept of a rotating water-cooled target. Each proton pulse hit a new beryllium plate allowing distributing heating power over a large area and achieving good heat removal from the system. However, the cooling was not ideal; high water flow was required leading to significant pressures near beryllium segments and creating a threat of their destruction during the operation of the device. Here, we consider a new and more efficient concept of water cooling suggesting that water flows normally to the cooled surfaces (jet cooling). Thermodynamical numerical simulations allowed us to estimate maximum temperature of targets and water pressure near the beryllium segments depending on the cooling water flow. We showed a significant improvement of all parameters of the device compared to the old concept of target assembly.

About the authors

P. V Shvets

I. Kant Baltic Federal University

Author for correspondence.
Email: pshvets@kantiana.ru
Research and Educational Center "Functional Nanomaterials" Kaliningrad, Russia

P. A Prokopovich

I. Kant Baltic Federal University

Email: pshvets@kantiana.ru

Research and Educational Center "Functional Nanomaterials"

Kaliningrad, Russia

E. I Fatyanov

I. Kant Baltic Federal University

Email: pshvets@kantiana.ru

Research and Educational Center "Functional Nanomaterials"

Kaliningrad, Russia

S. F Sidorkin

Institute for Nuclear Research RAS

Email: pshvets@kantiana.ru
Moscow, Russia

A. Yu Goihman

I. Kant Baltic Federal University

Email: pshvets@kantiana.ru

Research and Educational Center "Functional Nanomaterials"

Kaliningrad, Russia

References

  1. Iyengar P.K. // Nucl. Instrum. Methods Phys. Res. A. 1987. V. 255. № 1–2. P. 253. https://www.doi.org/10.1016/0168-9002(87)91111-9
  2. Carpenter J.M. // EPJ Web Conf. 2020. V. 231. P. 01001. https://www.doi.org/10.1051/epjconf/202023101001
  3. Grigoriev S.V., Kovalenko N.A., Pavlov K.A., Moskvin E.V., Syromyatnikov V.G., Grigoryeva N.A. // Bull. RAS: Phys. 2023. V. 87. № 11. P. 1561. https://www.doi.org/10.3103/S1062873823703690
  4. Subbotina V.V., Pavlov K.A., Kovalenko N.A., Konik P.I., Voronin V.V., Grigoriev S.V. // Nucl. Instrum. Methods Phys. Res. A. 2021. V. 1008. P. 165462. https://www.doi.org/10.1016/j.nima.2021.165462
  5. Skalyga V.A., Izotov I.V., Vybin S.S., Kulevoy T.V., Kropachev G.N., Sitnikov A.L., Grigoriev S.V. // J. Phys: Conf. Series. 2022. V. 2244. P. 012092. https://www.doi.org/10.1088/1742-6596/2244/1/012092
  6. Pavlov K.A., Konik P.I., Kovalenko N.A., Kulevoy T.V., Serebrennikov D.A., Subbotina V.V., Pavlova A.E., Grigorev S.V. // Crystallography Reports. 2022. V. 67. P. 3. https://www.doi.org/10.1134/S1063774522010096
  7. Kropachev G.N., Kulevoy T.V., Sitnikov A.L., Vinogradov S.V., Khabibullina E.R., Skachkov V.S., Sergeeva O.S. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2023. V. 17. P. 759. https://www.doi.org/10.1134/S1027451023040079
  8. Kilmetova I.V., Kozlov A.V., Kropachev G.N., Kulevoy T.V., Liakin D.A., Sergeeva O.S., Skachkov V.S., Stasevich Yu.B. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. V. 17. № 4. P. 772. https://www.doi.org/10.1134/s1027451023040067
  9. Yamagata Y., Hirota K., Ju J., Wang S., Morita S., Kato J., Otake Y., Takeami A., Seki Y., Yamada M., Ota H., Bautista U., Jia Q. // J. Radioanalyt. Nucl. Chem. 2015. V. 305. P. 787. https://www.doi.org/10.1007/s10967-015-4059-8
  10. Moroz A.R., Kovalenko N.A., Grigoriev S.V. // J. Neutron Res. 2022. V. 24. P. 1. https://www.doi.org/10.3233/JNR-220025
  11. Baxter D., Gutberler T., Otake Y., Ott F., Wang X. // J. Neutron Res. 2021. V. 23. P. 99. https://www.doi.org/10.3233/JNR-210012
  12. Terroh S., Sordo F., Magán M., Ghiglino A., Martinez F., de Vicente P.J., Vivanco R., Thomsen K., Períado J.M., Bermejo F.J., Abdnades A. // Nucl. Instrum. Methods Phys. Res. A. 2013. V. 724. P. 34. https://doi.org/10.1016/j.nima.2013.04.072
  13. Shvets P.V., Prokopovich P.A., Fatyanov E.I., Clemeniyev E.S., Moroz A.R., Kovalenko N.A., Golhman A.Yu. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2023. V. 17. P. 792. https://www.doi.org/10.1134/S102745102304016X
  14. Agostini B., Fabbri M., Park J.E., Wojtan L., Thome J.R., Bruno M. // Heat Transfer Engineering. 2007. V. 28. № 4. P. 258. https://www.doi.org/10.1080/01457630601117799
  15. COMSOL Multiphysics → v. 6.1 (2022). COMSOL AB, Швеция. www.comsol.com. Дата посещения 31.01.2025
  16. Abraham J.P., Sparrow E.M., Tong J.C.K. // Int. J. Heat Mass Transf. 2009. V. 52. P. 557. https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.009

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).