Maximum Achievable Diffraction Efficiency of Neutron Low-Frequency Gratings with Different Groove Profiles

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Rigorous calculations of the absolute diffraction efficiency η, performed earlier using two commercial computer solver based on electromagnetic methods, have shown that the maximum η of neutron gratings with sinusoidal and lamellar groove profiles can exceed known analytical limits. Thus, for a sinusoidal grating with a period of d = 50 μm, a groove depth of h = 53.4 nm at an incidence angle of θ = 89.72° (θc = 89.53°), η(−1) = 46.8% was obtained at a wavelength of λ = 1 nm, which is 38.5% higher than the maximum scalar efficiency. For a similar lamellar grating, η(−1) = 46.05% was obtained, which is 13.7% higher than the scalar one. In this work, for copper, one of the promising materials for cold neutron optics, not only gratings with sinusoidal and lamellar groove profiles were investigated, but also the most efficient gratings with a triangular profile ("with blaze") were considered. For a grating with d = 50 μm and h = 41.1 nm, η(−1) = 79.2% was obtained for θ = 89.37° and λ = 1 nm. The data calculated using both codes with an accuracy of ~0.1% for the main diffraction orders of gratings of all groove profiles converge well and correspond to the estimates obtained using the phenomenological approach.

Авторлар туралы

L. Goray

Saint Petersburg Electrotechnical University "LETI"; Alferov University; Institute for Analytical Instrumentation; Moscow Institute of Physics and Technology

Хат алмасуға жауапты Автор.
Email: lig@pegrate.com
St. Petersburg, Russia; St. Petersburg, Russia; St. Petersburg, Russia; Dolgoprudny, Russia

N. Kostromin

Saint Petersburg Electrotechnical University "LETI"; Alferov University

Email: lig@pegrate.com
St. Petersburg, Russia; St. Petersburg, Russia

Әдебиет тізімі

  1. Utsuro M., Ignatovich V.K. Handbook of Neutron Optics. Verlag: Wiley-VCH, 2010. 610 p.
  2. https://www.google.ru/books/edition/__/q7Hf0AEACAAJ?hl=nu&sa=X&ved=2ahUKEwic09lA6vqJAXUkFikFHWLkMmgQ8fIDegQIExAD
  3. Scattering Length Density Calculator. http://www.refcalc.appspot.com/sld Accessed on November 24, 2024.
  4. Spiller E. Soft X-Ray Optics. Bellingham–Washington: SPIE Opt. Eng. Press, 1994. 278 p. https://books.google.ru/books?hl=ru<=&id=khnchMG2KdwC&oi=fnd&pg=PR9&ots=ZD97X1kbjs&sig=f6VAlnLcnFAUGHSZH716H93R8w&redit_esc=yiv-onepage&q&f=false
  5. Bushuev V.A., Frank A.I., Kulin G.V. // J. Exp. Theor. Phys. 2016. V. 122. P. 32. https://doi.org/10.1134/S1063776115120055
  6. Kulin G.V., Frank A.I., Rebrova N.V., Zakharov M.A., Gutfreund P., Khaydukov Yu.N., Ortega L., Roschupkin D.V., Goray L.I. // Eur. Phys. J. B. 2024. V. 97. P. 194. https://doi.org/10.1140/epjb/s10051-024-00829-7
  7. Goray L.I. // Bull. Russ. Acad. Sci. Phys. 2005. V. 69. P. 231.
  8. Born M., Wolf E. Principles of Optics. Cambridge: Cambridge University Press, 1999. 808 p. https://doi.org.10.1017/9781108769914
  9. Electromagnetic Theory of Gratings / Ed. Petit R. Berlin: Springer, 1980. 286 p.
  10. Loewen E.G., Neviere M., Maystre D. // JOSA. 1978. V. 68 Iss. 4. P. 496. https://doi.org/10.1364/JOSA.68.000496
  11. Neviere M., Flamand J. // Nucl. Instrum. Methods 1980. V. 172. P. 273. https://doi.org/10.1016/0029-554X(80)90646-1
  12. Goray L.I., Schmidt G. // Gratings: Theory and Numeric Applications / Ed. Popov E. Marseille: Universitaires de Provence, 2014. 578 p. www.fresnel.fr/numerical-grating-book-2
  13. Goray L.I. // Proc. SPIE. 1994. V. 2278. P. 173. https://doi.org/10.1117/12.180012
  14. Goray L.I, Jark W., Eichert D. // J. Synchrotron Radiat. 2018. V. 25. P. 1683. https://doi.org/10.1107/S1600577518012419
  15. Goray L.I. // Proc. Conf. 2024 Days on Diffraction (DD). IEEE Xplore. 2024. P. 65. https://doi.org/10.1109/DD62861.2024.10767957
  16. https://pegrate.com, Accessed on November 24, 2024.
  17. https://gsolver.com, Accessed on November 24, 2024.
  18. Goray L.I. // Waves Random Complex Media. 2010. V. 20. Iss. 4. P. 569. https://doi.org/10.1080/17455030.2010.510857
  19. Goray L.I. // J. Appl. Phys. 2010. V. 108. P. 033516. https://doi.org/10.1063/1.3467937
  20. Goray L.I. // J. Synchrotron Radiat. 2021. V. 28. P. 196. https://doi.org/10.1107/S160057752001440X
  21. Voronov D.L., Cambie R., Feshchenko R.M., Gullikson E.M., Padmore H.A., Vinogradov A.V., Yashchuk V.V.// Proc. SPIE. 2007. V. 6705. P. 67050E. https://doi.org/10.1117/12.732658
  22. Voronov D.L., Park S., Gullikson E.M., Salmassi F., Padmore H.A. // Opt. Express. 2023. V. 31. Iss. 16. P. 26724. https://doi.org/10.1364/OE.495374
  23. Revolutionizing Diffraction Gratings. https://inprentus.com/ Accessed on November 24, 2024.
  24. Voronov D.L., Park S., Gullikson E.M., Salmassi F., Padmore H.A. // Opt. Express. 2021. V. 29. P. 16676. https://doi.org/10.1364/OE.424536

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).