Исследование пленок SiO2, полученных методом PECVD и легированных ионами Zn

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Представлены результаты исследования пленок оксида кремния, полученных методом PECVD на Si-подложках. Их имплантировали ионами 64Zn+ с энергией 50 кэВ (доза 7 × 1016 см-2), а затем отжигали в атмосфере кислорода при повышенных температурах. Обнаружено, что после имплантации в пленке SiO2 цинк распределен по нормальному закону с максимумом около 40 нм. После имплантации цинк находится в пленке оксида кремния как в металлической фазе (ближе к поверхности пленки), так и в окисленном состоянии (в глубине пленки). После отжигов до 800°С профиль цинка смещается вглубь пленки, в этом случае цинк находится в пленке только в окисленном состоянии. При высоких температурах (более 800°С) профиль цинка смещается к поверхности пленки.

Об авторах

В. В. Привезенцев

Национальный исследовательский центр "Курчатовский институт"-НИИ системных исследований

Email: v.privezentsev@mail.ru
Москва, 117218 Россия

А. А. Фирсов

Национальный исследовательский центр "Курчатовский институт"-НИИ системных исследований

Email: v.privezentsev@mail.ru
Москва, 117218 Россия

В. С. Куликаускас

Московский государственный университет им. М.В. Ломоносова, НИИЯФ им. Д.В. Скобельцына

Email: v.privezentsev@mail.ru
Москва, 119991 Россия

В. В. Затекин

Московский государственный университет им. М.В. Ломоносова, НИИЯФ им. Д.В. Скобельцына

Email: v.privezentsev@mail.ru
Москва, 119991 Россия

Е. П. Кириленко

Институт нанотехнологий микроэлектроники РАН

Email: v.privezentsev@mail.ru
Москва, 119991 Россия

А. В. Горячев

Институт нанотехнологий микроэлектроники РАН

Email: v.privezentsev@mail.ru
Москва, 119991 Россия

Список литературы

  1. Старостин В.В. Материалы и методы нанотехнологий. М.: БИНОМ, 2015. 434 с.
  2. Litton С.W., Collins T.C., Reynolds D.S. Zinc Oxide Material for Electronic and Optoelectronic Device Application. Chichester: Wiley, 2011.
  3. Neshataeva E., Kümmell T., Bacher G., Ebbers A. // Appl. Phys. Lett. 2009. V. 94. P. 091115. https://doi.org/10.1063/1.3093675
  4. Chu S., Olmedo M., Yang Zh. et al. // Appl. Phys. Lett. 2008. V. 93. P. 181106. https://doi.org/10.1063/1.3012579
  5. Smestad G.P., Gratzel M. // J. Chem. Educ. 1998. V. 75. P. 752. https: j.chem.wisc.edu.
  6. Li C., Yang Y., Sun X.W., Lei W., Zhang X.B., Wang B.P., Wang J.X., Tay B.K., Ye J.D., Lo G.Q., Kwong D.L. // Nanotechnology. 2007. V. 18. P. 135604. https://doi.org/10.1088/0957-4484/18/13/135604
  7. Mehonic A., Shluger A.L., Gao D., Valov I., Miranda E., Ielmini D., Bricalli A., Ambrosi E., Li C., Yang J.J., Xia Q., Kenyon A.J. // Adv. Mater. 2018. V. 30. 43. P. 1801187. https://doi.org/10.1002/adma.201801187
  8. Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., ohd Bakhori S.K., Hasan H., Mohamad D. // Nano-Micro Lett. 2015. V. 7. P. 219. https://doi.org/10.1007/s40820-015-0040-x
  9. Inbasekaran S., Senthil R., Ramamurthy G., Sastry T.P. // Intern. J. Innov. Res. Sci. Eng. Technol. 2014. V. 3. P. 8601. www.ijirset.com.
  10. Straumal B.B., Mazilkin A.A., Protasova S.G., Myatiev A.A., Straumal P.B., Schütz G., van Aken P.A., Goering E., Baretzky B. // Phys. Rev. B. 2009. V. 79. P. 205206. https://doi.org/10.1103/PhysRevB.79.205206
  11. Ilyas N., Li C., Wang J., Jiang X., Fu H., Liu F., Gu D., Jiang Y., Li W. // J. Phys. Chem. Lett. 2022. V. 13 (3). P. 884. https://doi.org/10.1021/acs.jpclett.1c03912
  12. Qin F., Zhang Y., Guo Z. et al. // Mater. Adv. 2024. V. 5. P. 4209. https://doi.org/10.1039/d3ma01142
  13. Okulich E.V., Okulich V.I., Tetelbaum D.I., Mikhaylov A.N. // Mater. Lett. 2022. V. 310. P. 131494. https://doi.org/10.1016/j.matlet.2021.131494
  14. Mehonic A., Gerard T., Kenyon A.J. // Appl. Phys. Lett. 2017. V. 111. P. 233502. https://doi.org/10.1063/1.5009069
  15. Chang K.C., Tsai T.M., Chang T.C., Wu H.H., Chen J.H., Syu Y.E., Chang G.W., Chu T.J., Liu G.R., Su Y.T., Chen M.C., Pan J.H., Chen J.Y., Tung C.W., Huang H.C., Tai Y.H., Gan D.S., Sze S.M. // IEEE Eelecron. Dev. Lett. 2013. V. 34 (9). P. 399. https://doi.org/10.1109/LED.2013.2241725
  16. Privezentsev V.V., Kulikauskas V.S., Zatekin V.V., Kiselev D.A., Voronova M.I. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2022. V. 16 (3). P. 402. https://doi.org/ 10.1134/S1027451022030314
  17. Hofmann S. Auger- and X-Ray Photoelectron Spectroscopy in Material Science. Berlin Heidelberg: Springer-Verlag, 2013.
  18. Анализ поверхности методами оже- и рентгеновской фотоэлектронной спектроскопии / Ред. Бриггс Д., Сих М.П. М.: Мир, 1987. 600 с.
  19. Монахова Ю.Б., Муштакова С.П. // Журнал аналитической химии. 2012. Т. 67. Вып. 12. С. 1044.
  20. SIMNRA code. https://mam.home.ipp.mpg.de/
  21. Ziegler J.F., Biersack J.P. SRIM 2013 (http://www.srim.org).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Институт физики твердого тела РАН, Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).