Analysis of Angle Resolved X-ray Photoelectron Emission Spectra of Highly Oriented Pyrolytic Graphite

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The interest in Van-der-Waals structures is associated with their unique physical and chemical properties and the prospects for technological applications. In this work, the object of study is highly oriented pyrolytic graphite as a model of such materials. The experimental results of measuring the spectra of angle resolved X-ray photoelectron spectroscopy are presented. The experiments were performed for detection angles of 0°, 60°, 80° and 85° from the surface normal, which made it possible to maximally localize the XPS signal generated by the upper layer of the highly oriented pyrolytic graphite. A technique for reconstructing the differential cross section of inelastic electron energy losses from experimental X-ray photoelectron spectroscopy spectra is presented. According to this technique, the differential cross section of inelastic electron scattering in the highly oriented pyrolytic graphite was reconstructed for each detection angle. The obtained cross sections are compared with those reconstructed for graphene with a different number of layers. The determining influence of collective plasmon electron energy losses on the formation of the energy loss spectrum in heterogeneous Van der Waals structures is indicated.

Авторлар туралы

V. Afanas'ev

National Research University "MPEI"

Email: v.af@mail.ru
Moscow, 111250 Russia

L. Lobanova

National Research University "MPEI"

Email: v.af@mail.ru
Moscow, 111250 Russia

A. Eletskii

National Research University "MPEI"

Email: v.af@mail.ru
Moscow, 111250 Russia

K. Maslakov

Lomonosov Moscow State University

Email: v.af@mail.ru
Moscow, 119991 Russia

M. Semenov-Shefov

National Research University "MPEI"

Email: v.af@mail.ru
Moscow, 111250 Russia

G. Bocharov

National Research University "MPEI"

Email: v.af@mail.ru
Moscow, 111250 Russia

Әдебиет тізімі

  1. Geim A.K., Grigorieva I.V. // Nature. 2013. V. 499. P. 419. https://www.doi.org/10.1038/nature12385
  2. Novoselov K.S., Castro Neto A.H. // Phys. Scr. 2012. V. 2012. No T146. P. 014006. https://www.doi.org/10.1088/0031-8949/2012/T146/014006
  3. Barrett N., Krasovskii E.E., Themlin J.M., Strocov V.N. // Surf. Sci. 2004. V. 566-568. P. 532. https://www.doi.org/10.1016/j.susc.2004.05.104
  4. Werner W.S.M., Bellissimo A., Leber R., Ashraf A., Segui S. // Surf. Sci. 2015. V. 635. P. L1. https://www.doi.org/10.1016/j.susc.2014.12.016
  5. Werner W.S.M., Astašauskas V., Ziegler P., Bellissimo A., Stefani G., Linhart L., Libisch F. // Phys. Rev. Lett. 2020. V. 125. No 19. P. 196603. https://www.doi.org/10.1103/PhysRevLett.125.196603
  6. Taft E.A., Philip H.R. // Phys. Rev. 1965. V. 138. No 1A. https://www.doi.org/10.1103/PhysRev.138.A197
  7. Wallace P. // Phys. Rev. 1947. V. 71. No 9. P. 622. https://www.doi.org/10.1103/PhysRev.71.622
  8. Marinopoulos A.G., Reining L., Olevano V., Rubio A., Pichler T., Liu X., Knupfer M., Fink J. // Phys. Rev. Lett. 2002. V. 89. No 7. P. 076402. https://www.doi.org/10.1103/PhysRevLett.89.076402
  9. Papageorgiou N., Portail M., Layet J. M. // Surf. Sci. 2000. V. 454-456. P. 462. https://www.doi.org/10.1016/S0039-6028(00)00127-8
  10. Eberlein T., Bangert U., Nair R.R., Jones R., Gass M., Bleloch A.L., Novoselov K.S., Geim A., Briddon P.R. // Phys. Rev. B. 2008. V. 77. No 23. P. 233406. https://www.doi.org/10.1103/PhysRevB.77.233406
  11. Pauly N., Novák M., Tougaard S. // Surf. Interface Anal. 2013. V. 45. No 4. P. 811. https://www.doi.org/10.1002/sia.5167
  12. Tanuma S., Powell C., Penn D. // Surf. Interface Anal. 2011. V. 43. No 3. P. 689. https://www.doi.org/10.1002/sia.3522
  13. Hoffman S. Auger and X-Ray Photoelectron Spectroscopy in Materials Science. Berlin Heidelberg: Springer, 2012. 528 pp. https://doi.org/10.1007/978-3-642-27381-0
  14. NIST Electron Elastic-Scattering Cross-Section Database, Version 5.0. (2002) https://srdata.nist.gov/srd64/
  15. Salvat F., Jablonski A., Powell C.J. // Comput. Phys. Commun. 2005. V. 165. No 2. P. 157. https://www.doi.org/10.1016/j.cpc.2004.09.006
  16. Garcia-Molina R., Abril I., Denton C.D., Heredia-Avalos S. // Nucl. Instrum. Meth. B. 2006. V. 249. No 1-2. P. 6. https://www.doi.org/10.1016/j.nimb.2006.03.011
  17. Strehlow W.H., Cook E.L. // J. Phys. Chem. Ref. Data. 1973. V. 2. No 1. P. 163.
  18. Afanas'ev V.P., Bocharov G S., Gryazev A.S., Eletskii A.V., Kaplya P.S., Ridzel O.Y. // J. Phys.: Conf. Ser. 2018. V. 1121. P. 012001. https://www.doi.org/10.1088/1742-6596/1121/1/012001
  19. Afanas'ev V.P., Bocharov G.S., Eletskii A.V., Ridzel O. Yu., Kaplya P.S., Köppen M. // J. Vac. Sci. Technol. B. 2017. V. 35. No 4. P. 041804. https://www.doi.org/10.1116/1.4994788
  20. Afanas'ev V.P., Bocharov G.S., Gryazev A.S., Eletskii A.V., Kaplya P.S., Ridzel O.Yu. // J. Surf. Invest. X-ray, Synchrotron Neutron Tech. 2020. V. 14. No 2. P. 366. https://www.doi.org/10.1134/S102745102002041X

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).