Study of Xenon Ion-Induced Silicon Amorphization Using Transmission Electron Microscopy and Monte Carlo Simulation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Xenon ions with energies of 5 and 8 keV were used to amorphize a single-crystal silicon substrate. Cross-sectional samples of the irradiated areas were examined by transmission electron microscopy in the bright field mode, and the thicknesses of the amorphized layers were determined based on the analysis of the obtained images. Simulation of the ion bombardment process was carried out using the Monte Carlo technique along with critical point defect density model, which made it possible to obtain theoretical estimates of the thickness of these layers. The calculation results were compared with experimental data. Monte Carlo simulation was shown to describe low-energy xenon ion-induced amorphization of single-crystal silicon with acceptable precision.

Авторлар туралы

O. Podorozhniy

National Research University of Electronic Technology

Email: lemi@miee.ru
Zelenograd, Moscow, 124498 Russia

A. Rumyantsev

National Research University of Electronic Technology

Email: lemi@miee.ru
Zelenograd, Moscow, 124498 Russia

N. Borgardt

National Research University of Electronic Technology

Email: lemi@miee.ru
Zelenograd, Moscow, 124498 Russia

D. Minnebaev

Lomonosov Moscow State University

Email: lemi@miee.ru
Moscow, 119991 Russia

A. Ieshkin

Lomonosov Moscow State University

Email: lemi@miee.ru
Moscow, 119991 Russia

Әдебиет тізімі

  1. Ghosh B., Ray S.C., Pattanaik S., Sarma S., Mishra D.K., Pontsho M., Pong W. F. // J. Phys. D. 2018. V. 51. No 9. P. 095304. https://doi.org/10.1088/1361-6463/aaa832
  2. Vasquez L., Redondo-Cubero A., Lorenz K., Palomares F.J., Cuerno R. // J. Phys.: Condens. Matter. 2022. V. 34. No 33. P. 333002. https://doi.org/10.1088/1361-648X/ac75a1
  3. Hlawacek G., Veligura V., van Gastel R., Poelsema B. // J. Vac. Sci. Technol. B. 2014. V. 32. No 2. P. 020801. https://doi.org/10.1116/1.4863676
  4. Petrov Y.V., Vyvenko O.F. // Beilstein J. Nanotechnol. 2015. V. 6. No 1. P. 1125. https://doi.org/10.3762/bjnano.6.114
  5. Cherepin V.T. Secondary Ion Mass Spectroscopy of Solid Surfaces. CRC Press, 2020. 138 p. https://doi.org/10.1201/9780429070327
  6. Sawyer W.D., Weber J., Nabert G., Schmälzlin J., Habermeier H.-U. // J. Appl. Phys. 1990. V. 68. P. 6179. https://doi.org/10.1063/1.346908
  7. Fleisher E.L., Norton M.G. // Heterog. Chem. Rev. 1996. V. 3. No 3. P. 171. https://doi.org/10.1002/(SICI)1234-985X(199609)3:33.0.CO;2-D
  8. Smith N.S., Notte J.A., Steele A.V. // MRS Bull. 2014. V. 39. No 4. P. 329. https://doi.org/10.1557/mrs.2014.53
  9. Höflich K., Hobler G., Allen F.I. et al. // Appl. Phys. Rev. 2023. V. 10. No 4. https://doi.org/10.1063/5.0162597
  10. Donovan E.P., Hubler G.K., Waddell C.N. // Nucl. Instrum. Methods Phys. Res. B. 1987. V. 19-20. P. 590. https://doi.org/10.1016/S0168-583X(87)80118-0
  11. Mikhailenko M.S., Pestov A.E., Chkhalo N.I., Zorina M.V., Chernyshev A.K., Salashchenko N.N., Kuznetsov I.I. // Appl. Opt. 2022. V. 61. No 10. P. 2825. https://doi.org/10.1364/AO.455096
  12. Van Leer B., Genc A., Passey R. // Microsc. Microanal. 2017. V. 23. No 1. P. 296. https://doi.org/10.1017/S1431927617002161
  13. Kelley R., Song K., Van Leer B., Wall D., Kwakman L. // Microsc. Microanal. 2013. V. 19. No 2. P. 862. https://doi.org/10.1017/S1431927613006302
  14. Rumyantsev A.V., Borgardt N.I., Prikhodko A.S., Chaplygin Yu.A. // Appl. Surf. Sci. 2021. V. 540. P. 148278. https://doi.org/10.1016/j.apsusc.2020.148278
  15. Wittmaack K., Oppolzer H. // Nucl. Instrum. Methods Phys. Res. B. 2011. V. 269. No 3. P. 380. https://doi.org/10.1016/j.nimb.2010.11.025
  16. Румянцев А.В., Приходько А.С., Боргардт Н.И. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. No 9. P. 103. https://doi.org/10.31857/S1028096020090174
  17. Huang J., Löffler M., Moeller W., Zschech E. // Microelectron. Reliab. 2016. V. 64. P. 390. https://doi.org/10.1016/j.microrel.2016.07.087
  18. Румянцев А.В., Боргардт Н.И., Волков Р.Л. // Поверхность. Рентген. синхротр. и нейтрон. исслед. 2018. No 6. С. 102. https://doi.org/10.7868/S0207352818060197
  19. Li Y.G., Yang Y., Short M.P., Ding Z.J., Zeng Z., Li J. // Sci. Rep. 2015. V. 5. No 1. P. 18130. https://doi.org/10.1038/srep18130
  20. Cerva H., Hobler G. // J. Electrochem. Soc. 1992. V. 139. No 12. P. 3631. https://doi.org/10.1149/1.2069134
  21. Huang J., Loeffler M., Muehle U., Moeller W., Mulders J.J.L., Kwakman L.F.Tz., Van Dorp W.F., Zschech E. // Ultramicroscopy. 2018. V. 184. P. 52. https://doi.org/10.1016/j.ultramic.2017.10.011
  22. Mayer J., Giannuzzi L.A., Kamino T., Michael J. // MRS Bull. 2007. V. 32. No 5. P. 400. https://doi.org/10.1557/mrs2007.63
  23. Eckstein W. Computer Simulation of Ion-Solid Interactions: Berlin-Heidelberg: Springer, 1991. 296 p. https://doi.org/10.1007/978-3-642-73513-4
  24. Mutzke A., Bandelow G., Schmid K. News in SDTrimSP Version 5.05, 2015. 46 p.
  25. Wilson W.D., Haggmark L.G., Biersack J.P. // Phys. Rev. B. 1977. V. 15. No 5. P. 2458. https://doi.org/10.1103/PhysRevB.15.2458
  26. Oen O.S., Robinson M.T. // Nucl. Instrum. Methods. 1976. V. 132. P. 647. https://doi.org/10.1016/0029-554X(76)90806-5
  27. Lindhard J., Scharff M. // Phys. Rev. 1961. V. 124. No 1. P. 128. https://doi.org/10.1103/PhysRev.124.128
  28. Süle P., Heinig K.-H. // J. Chem. Phys. 2009. V. 131. P. 204704. https://doi.org/10.1063/1.3264887
  29. Mutzke A., Eckstein W. // Nucl. Instrum. Methods Phys. Res. B. 2008. V. 266. No 6. P. 872. https://doi.org/10.1016/j.nimb.2008.01.053
  30. Wittmaack K. // Phys. Rev. B. 2003. V. 68. No 23. P. 235211. https://doi.org/10.1103/PhysRevB.68.235211

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).