Study of Radiation Resistance of Optical Properties of ZrO2 Micropowder Modified with MgO Nanoparticles

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of the study on the radiation resistance of optical properties of ZrO2 micropowder modified with MgO nanoparticles after electron irradiation (E = 30 keV, Φ = 2 × 10^16 cm^-2) are presented. It has been found that modification with MgO nanoparticles does not lead to the formation of new types of radiation defects; however, the number of formed radiation defects decreases with an increase in MgO content. When modified, radiation resistance increases by 1.7 times compared to unmodified samples.

Sobre autores

M. Mikhailov

Tomsk State University of Control Systems and Radioelectronics

Email: membrana2010@mail.ru
Tomsk, 634000

D. Fedosov

Tomsk State University of Control Systems and Radioelectronics

Email: phedosov99@gmail.com
Tomsk, 634000

V. Goronchko

Tomsk State University of Control Systems and Radioelectronics

Email: membrana2010@mail.ru
Tomsk, 634000

A. Lapin

Tomsk State University of Control Systems and Radioelectronics

Email: membrana2010@mail.ru
Tomsk, 634000

S. Yuryev

Tomsk State University of Control Systems and Radioelectronics

Email: membrana2010@mail.ru
Tomsk, 634000

Bibliografia

  1. Jing P., Liu M., Wang P., Yang J., Tang M., He C., Liu M. // Chem. Eng. J. 2020. V. 388. P. 124259. https://doi.org/10.1016/j.cej.2020.124259
  2. Bhamare V.S., Kulkarni R.M. // Advanced Ceramic Coatings. Elsevier, 2023. P. 157. https://doi.org/10.1016/B978-0-323-99659-4.00008-5
  3. Romaniv O.M., Zalite I.V., Simin'kovych V.M., Tkach O.N., Vasyliv B.D. // Mater. Sci. 1996. V. 31. No 5. P. 588. https://doi.org/10.1007/BF00558793
  4. Atkinson I., Mocioiu O.C., Anghel E.M. // Boletín de la Sociedad Española de Cerámica y Vidrio. 2022. V. 61. No 6. P. 677. https://doi.org/10.1016/j.bsecv.2021.07.002
  5. Song X., Ding Y., Zhang J., Jiang C., Liu Z., Lin C., Zeng Y. // J. Mater. Res. Technol. 2023. V. 23. P. 648. https://doi.org/10.1016/j.jmrt.2023.01.040
  6. Lee S., Zhang W., Khatkhatay F., Wang H., Jia Q., MacManus-Driscoll J.L. // Nano Lett. 2015. V. 15. No 11. P. 7362. https://doi.org/10.1021/acs.nanolett.5b02726
  7. Xu H.M., Jing M.X., Li J., Huang Z.H., Wang T.F., Yuan W.Y., Shen X.Q. // ACS Sustain. Chem. Eng. 2021. V. 9. No 33. P. 11118. https://doi.org/10.1021/acssuschemeng.1c02886
  8. Михайлов М.М., Юрьев С.А., Лапин А.Н., Горончко В.А., Утебеков Т.А. // Изв. вузов. Физика. 2023. Т. 66. No 6. С. 2023. https://doi.org/10.17223/00213411/66/6/15
  9. Mikhailov M.M., Neshchimenko V.V., Li C. // Dyes and Pigments. 2016. V. 131. P. 256. https://doi.org/10.1016/j.dyepig.2016.04.012
  10. Li C., Neshchimenko V.V., Mikhailov M.M. // Int. J. Chem., Nucl., Metall. Mater. Eng. 2014. V. 8. P. 342. https://doi.org/10.1016/j.nimb.2014.04.014
  11. Kositsyn L.G., Duoretskii M.I., Kuznetsov N.Y., Mikhailov M.M. // Instrum. Experim. Tech. 1985. V. 28. No 4. P. 929.
  12. ASTM E490-00a Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables. 2019.
  13. ASTM E903-96 Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres. 2005.
  14. Lee T., Selloni A. // J. Phys. Chem. C. 2023. V. 127. No 28. P. 13936. https://doi.org/10.1021/acs.jpcc.3c02833
  15. Feng S., Zhao J., Liang X., Li H., Wang C. // Mol. Catal. 2023. V. 544. P. 113205. https://doi.org/10.1016/j.mcat.2023.113205
  16. Mikhailov M.M., Dvoretskii M.I. // Soviet Phys. J. 1988. V. 31. P. 591.
  17. Kuznetsov V.N., Serpone N. // J. Phys. Chem. 2009. V. 113. P. 15110. https://doi.org/10.1021/jp901034t
  18. Zheng J.X., Ceder G., Maxisch T., Chim W.K., Choi W.K. // Phys. Rev. B. 2007. V. 75. P. 104112. https://doi.org/10.1103/PhysRevB.75.104112
  19. Полежаев Ю.М., Кортов В.С., Мишкевич М.В. // Изв. АН СССР. Неорган. материалы. 1975. T. 11. No 3. C. 486.
  20. Михайлов М.М., Дворецкий М.И., Кузнецов Н.Я. // Изв. АН СССР. Неорган. материалы. 1984. T. 20. No 3. C. 449.
  21. Foster A.S., Sulimov V.B., Gejo Lopez F. // Phys. Rev. B. 2001. V. 64. P. 224108. https://doi.org/10.1103/PhysRevB.64.224108

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).