On the Features of the Formation of Polar Distribution of Sputtered Atoms in the MD Model of the (001) Ni Face Sputtering

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using a modern complete molecular dynamics model of single crystal sputtering taking into account ion incidence on the surface, the mechanisms of formation of the polar and azimuthal angle distribution of atoms sputtered from the surface of the (001) Ni face by Ar ions with an energy of 200 eV are studied. It is shown that the sputtered atoms, over focused by the azimuthal angle, eject only near the directions corresponding to the directions to the centers of lenses of two atoms in the surface plane neighboring to the ejecting atom. It is found that in the polar angular distribution of sputtered atoms with an energy of 2.5 ± 0.1 eV in the range of the azimuthal angle of 87° ± 1.5°, close to the center of the lens, three maxima formed by atoms with significantly different mechanisms of emission are observed. It is concluded that the formation of these maxima occurs only due to the surface mechanism of single crystal sputtering.

About the authors

A. I. Musin

Moscow State University of Technology "STANKIN", Institute of Digital Intelligent Systems; Vyatka State University, Institute of Mathematics and Information Systems

Email: samoilov@polly.phys.msu.ru
Moscow, 127994; Kirov, Kirov Region, 610000

V. N. Samoilov

Lomonosov Moscow State University, Faculty of Physics

Email: samoilov@polly.phys.msu.ru
Moscow, 119991

References

  1. Михайленко М.С., Пестов А.Е., Зорина М.В., Чернышев А.К., Чхало Н.И., Шевчук И.Э. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. No 12. С. 25. https://doi.org/10.31857/S1028096023120154
  2. Андрианова Н.Н., Борисов А.М., Машкова Е.С., Овчинников М.А., Суминов И.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. No 4. С. 10. https://doi.org/10.31857/S1028096023040027
  3. Лядов Н.М., Базаров В.В., Вахитов И.Р., Гумаров А.И., Ибрагимов Ш.З., Кузина Д.М., Файзрахманов И.А., Хайбуллин Р.И., Шустов В.А. // Физика твердого тела. 2021. Т. 63. No 10. С. 1687. https://doi.org/10.21883/FTT.2021.10.51424.117
  4. Хисамов Р.Х., Тимиряев Р.Р., Сафаров И.М., Мулюков Р.Р. // Письма о материалах. 2020. Т. 10. No 2. С. 223. https://doi.org/10.22226/2410-3535-2020-2-223-226
  5. Борисов А.М., Машкова Е.С., Овчинников М.А., Хисамов Р.Х., Мулюков Р.Р. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. No 3. С. 71. https://doi.org/10.31857/S1028096022030062
  6. Sigmund P. // Phys. Rev. 1969. V. 184. No 2. P. 383. https://doi.org/10.1103/PhysRev.184.383
  7. Самойлов В.Н. // Изв. АН СССР. Сер. физ. 1990. Т. 54. No 7. С. 1283.
  8. Мусин А.И., Самойлов В.Н. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2024. No 6. С. 20.
  9. Kornich G.V., Betz G. // Nucl. Instrum. Methods Phys. Res. B. 1998. V. 143. No 4. P. 455. https://doi.org/10.1016/S0168-583X(98)00410-8
  10. Kornich G.V., Betz G., Bazhin A.I. // Nucl. Instrum. Methods Phys. Res. B. 1999. V. 153. No 1-4. P. 383. https://doi.org/10.1016/S0168-583X(99)00218-9
  11. Ackland G.J., Tichy G., Vitek V., Finnis M.W. // Phil. Mag. A. 1987. V. 56. No 6. P. 735. https://doi.org/10.1080/01418618708204485
  12. Ziegler J.F., Biersack J.P., Littmark U. // Charge States and Dynamic Screening of Swift Ions in Solids. Proc. of the U.S.-Japan Seminar on Charged-Particle Penetration Phenomena, 25-29 January 1982, Honolulu, Hawaii, the U.S.A. The Oak Ridge National Laboratory Publ., Oak Ridge, Tennessee, U.S.A, 1983. P. 88.
  13. Gao F., Bacon D.J., Ackland G.J. // Phil. Mag. A. 1993. V. 67. No 2. P. 275. https://doi.org/10.1080/01418619308207158
  14. Самойлов В.Н., Мусин А.И. // Изв. РАН. Сер. физ. 2018. Т. 82. No 2. С. 171. https://doi.org/10.7868/S0367676518020084
  15. Самойлов В.Н., Мусин А.И., Ананьева Н.Г. // Изв. РАН. Сер. физ. 2016. Т. 80. No 2. С. 122. https://doi.org/10.7868/S0367676516020289
  16. Eltekov V.A., Samoylov V.N., Yurasova V.E., Motaweh H.A. // Nucl. Instrum. Methods Phys. Res. B. 1986. V. 13. No 1-3. P. 443. https://doi.org/10.1016/0168-583X(86)90544-6
  17. Wehner G.K. // J. Appl. Phys. 1955. V. 26. No 8. P. 1056. https://doi.org/10.1063/1.1722136
  18. Юрасова В.Е., Плешивцев Н.В., Орфанов И.В. // ЖЭТФ. 1959. Т. 37. Вып. 4. С. 966.
  19. Rübesame D., Niedrig H. // Radiat. Eff. Def. Solids. 1996. V. 138. No 1-2. P. 49. https://doi.org/10.1080/10420159608211508
  20. Samoilov V.N., Tatur A.E., Kovaleva N.A., Kozhanov A.E. // Nucl. Instrum. Methods Phys. Res. B. 1999. V. 153. No 1-4. P. 319. https://doi.org/10.1016/S0168-583X(99)00216-5
  21. Шпиньков В.И., Самойлов В.Н. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2009. No 3. С. 73.
  22. Voevodin Vl.V., Antonov A.S., Nikitenko D.A., Shvets P.A., Sobolev S.I., Sidorov I.Yu., Stefanov K.S., Voevodin Vad.V., Zhumatiy S.A. // Supercomputing Frontiers and Innovations. 2019. V. 6. No 2. P. 4. https://doi.org/10.14529/jsfi190201

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).