Изменение спектральных характеристик некоторых полимерных материалов в интервале частот от 0.2 до 2 ТГц в результате воздействия мегаваттным потоком субмиллиметрового излучения микросекундной длительности

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Зарегистрировано влияние воздействия импульсными мегаваттными потоками излучения в интервале частот 0.1–0.4 ТГц на спектральные характеристики некоторых тонкопленочных полимерных материалов в диапазоне частот от 0.2 до 2 ТГц. Характеризация полимерных образцов проведена с использованием технических решений в рамках спектроскопии во временной области и ЛОВ-спектроскопии. Для воздействия использован поток излучения в субмиллиметровом диапазоне длин волн длительностью около 4 мкс, генерируемый при пучково-плазменном взаимодействии на установке ГОЛ-ПЭТ (ИЯФ СО РАН). Установлено, что относительные изменения реальной части диэлектрической проницаемости отдельных образцов из поливинилиденфторида достигают уровня 0.5 при исходной величине около 3.0, в то время как для образцов из поливинилхлорида никаких изменений этого параметра не зарегистрировано. В то же время для отдельных образцов из полимочевины зарегистрированы как значительные изменения этого параметра, так и малозначимое его изменение по результатам воздействия. Результаты проведенных экспериментов дают основу для использования тонкопленочных полимерных материалов в качестве подложек для образцов супрамолекулярных комплексов, которые при исследованиях будут подвергаться воздействию мощных импульсных потоков излучения в субмиллиметровом диапазоне длин волн.

Об авторах

А. В. Аржанников

Институт ядерной физики им. Г.И. Будкера СО РАН

Email: A.V.Arzhannikov@inp.nsk.su
Новосибирск, 630090 Россия

С. Л. Синицкий

Институт ядерной физики им. Г.И. Будкера СО РАН

Новосибирск, 630090 Россия

Д. А. Самцов

Институт ядерной физики им. Г.И. Будкера СО РАН

Новосибирск, 630090 Россия

П. В. Калинин

Институт ядерной физики им. Г.И. Будкера СО РАН

Новосибирск, 630090 Россия

С. А. Кузнецов

Институт ядерной физики им. Г.И. Будкера СО РАН

Новосибирск, 630090 Россия

В. Д. Степанов

Институт ядерной физики им. Г.И. Будкера СО РАН

Новосибирск, 630090 Россия

С. С. Попов

Институт ядерной физики им. Г.И. Будкера СО РАН

Новосибирск, 630090 Россия

Е. С. Сандалов

Институт ядерной физики им. Г.И. Будкера СО РАН

Новосибирск, 630090 Россия

М. Г. Атлуханов

Институт ядерной физики им. Г.И. Будкера СО РАН

Новосибирск, 630090 Россия

А. В. Станкевич

Российский Федеральный Ядерный Центр – Всероссийский научно-исследовательский институт технической физики имени академика Е. И. Забабахина; Институт органического синтеза им. И.Я. Постовского УрО РАН

Снежинск, 456770 Россия; Екатеринбург, 620990 Россия

А. В. Пестов

Институт органического синтеза им. И.Я. Постовского УрО РАН

Екатеринбург, 620990 Россия

Н. А. Николаев

Институт автоматики и электрометрии СО РАН

Новосибирск, 630090 Россия

А. А. Рыбак

Институт автоматики и электрометрии СО РАН

Новосибирск, 630090 Россия

Список литературы

  1. Fischer B.M., Helm H., Jepsen P.U. // Proc. SPIE. 2006. V. 6038. P. 42. https://doi.org/10.1117/12.651748
  2. Reimann K., Woerner M., Elsaesser T. // J. Chem. Phys. 2021. V. 154. № 12. P. 120901. https://doi.org/10.1063/5.0046664
  3. Surovtsev N.V., Malinovsky V.K., Boldyreva E.V. // J. Chem. Phys. 2011. V. 134. № 4. P. 045102. https://doi.org/10.1063/1.3524342
  4. Afsah-Hejri L., Hajeb P., Ara P., Ehsani R.J. // Compr. Rev. Food Sci. Food Safety. 2019. V. 18. № 5. P. 1563. https://doi.org/10.1111/1541-4337.12490
  5. Folpini G., Reimann K., Woerner M., Elsaesser T., Hoja J., Tkatchenko A. // Phys. Rev. Lett. 2017. V. 119. № 9. P. 097404. https://doi.org/10.1103/PhysRevLett.119.097404
  6. Michalchuk A.A.L., Fincham P.T., Portius P., Pulham C.R., Morrison C.A. // J. Phys. Chem. C. 2018. V. 122. № 34. P. 19395. https://doi.org/10.1021/acs.jpcc.8b05285
  7. Michalchuk A.A.L. Trestman M., Rudić S., Portius P., Fincham P.T., Pulham C.R., Morrison C.A. // J. Mater. Chem. A. 2019. V. 7. № 33. P. 19539. https://doi.org/10.1039/c9ta06209b
  8. Michalchuk A.A.L., Hemingway J., Morrison C.A. // J. Chem. Phys. 2021. V. 154. № 6. P. 064105. https://doi.org/10.1063/5.0036927
  9. Michalchuk A.A.L., Morrison C.A. // Theor. Comput. Chem. 2022. V. 22. P. 215. https://doi.org/10.1016/B978-0-12-822971-2.00010-3
  10. Stankevich A.V., Taibinov N.P., Kostitsyn O.V., Garmashev A.Yu. // J. Phys.: Conf. Ser. 2021. V. 1787. № 1. P. 012006. https://doi.org/10.1088/1742-6596/1787/1/012006
  11. Stankevich A.V., Tolshchina S.G., Korotina A.V., Rusinov G.L., Chemagina I.V., Charushin V.N. // Molecules. 2022. V. 27. № 20. P. 6966. https://doi.org/10.3390/molecules27206966
  12. Arzhannikov A.V., Burdakov A.V., Kalinin P.V. et al. // Vestnik Novosibirsk State University. Ser. Phys. 2010. V. 5. № 4. P. 44.
  13. Arzhannikov A.V. Burmasov V.S., Ivanov I.A., Kalinin P.V., Kuznetsov S.A., Makarov M.A., Mekler K.I., Polosatkin S.V., Rovenskikh A.F., Samtsov D.A., Sinitsky S.L., Stepanov V.D., Timofeev I.V. // 44th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Paris, 2019. P. 1. https://doi.org/10.1109/IRMMW-THz.2019.8874408
  14. Arzhannikov A.V., Ivanov I.A., Kasatov A.A., Kuznetsov S.A., Makarov M.A., Mekler K.I., Polosatkin S.V., Popov S.S., Rovenskikh A.F., Samtsov D.A., Sinitsky S.L., Stepanov V.D., Annenkov V.V., Timofeev I.V. // Plasma Phys. Controlled Fusion. 2020. V. 62. № 4. P. 045002. https://doi.org/10.1088/1361-6587/ab72e3
  15. Arzhannikov A.V., Sinitsky, S.L., Popov S.S., Timofeev I.V., Samtsov D.A., Sandalov E.S., Kalinin P.V., Kuklin, K.N., Makarov M.A., Rovenskikh A.F., Stepanov V.D., Annenkov V.V., Glinsky V.V. // IEEE Trans. on Plasma Sci. 2022. V. 50. № 8. P. 2348. https://doi.org/10.1109/TPS.2022.3183629
  16. Аржанников А.В., Синицкий С.Л., Самцов Д.А., Калинин П.В., Попов С.С., Атлуханов М.Г., Сандалов Е.С., Степанов В.Д., Куклин К.Н., Макаров М.А. // Сиб. физ. журнал. 2023. Т. 18. № 4. С. 79. https://doi.org/10.25205/2541-9447-2023-18-4-79-93
  17. Mamrashev A., Minakov F., Nikolaev N., Antsygin V. // Photonics. 2021. V. 8. № 6. P. 213. https://doi.org/10.3390/photonics8060213
  18. Mamrashev A.A., Maximov L.V., Nikolaev N.A., Chapovsky P.L. // IEEE Trans. Terahertz Sci. Tech. 2018. V. 8. № 1. P. 13. https://doi.org/10.1109/TTHZ.2017.2764385
  19. Кузнецов С.А., Астафьев М.А., Скляров В.Ф., Лазорский П.А., Аржанников А.В. // Вестн. НГУ. Сер. Физика. 2014. Т. 9. № 4. C. 15. https://doi.org/10.54362/1818-7919-2014-9-4-15-38
  20. Станкевич А.В., Соболевская А.В., Грецова А.Н., Стрельцова М.С., Фролова О.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. Т. 10. С. 3. https://doi.org/10.31857/S1028096023100205
  21. Семчиков Ю.Д., Жильцов С.Ф., Зайцев С.Д. Введение в химию полимеров: Учебное пособие. СПб.: Лань, 2014. 224 c.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Институт физики твердого тела РАН, Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).