Волнообразные периодические структуры на поверхности кремния, инициируемые облучением фокусированным ионным пучком галлия

Обложка

Цитировать

Полный текст

Аннотация

Исследованы процессы формирования микрорельефа на поверхности Si(100) при облучении пучком ионов Ga+ с энергией 30 кэВ и флуенсом D = 1.25 × 1018–2 × 1019–2 при углах падения θ = 30°–85°. Установлено, что в угловом диапазоне θ = 40°–70° на поверхности Si формируется фасетированный волнообразный рельеф, а при θ = 30° — синусоидальный. Получена экспериментальная зависимость длины волны периодической структуры от времени облучения λ(t) ~ tn, n = 0.33–0.35. Определены средние скорости распространения рельефа и их направление относительно направления падающих ионов в случае θ = 30° и 40°, которые составили –5.3 ± 0.6 и –6.3 ± 0.6 нм/с соответственно. Полученные результаты подробно рассмотрены в рамках существующих моделей формирования волнообразного рельефа поверхности при ионной бомбардировке.

Об авторах

В. И. Бачурин

Физико-технологический институт им. К.А. Валиева РАН

Email: vibachurin@mail.ru

Ярославский филиал 

Россия, Ярославль

М. А. Смирнова

Физико-технологический институт им. К.А. Валиева РАН

Email: vibachurin@mail.ru

Ярославский филиал

Россия, Ярославль

К. Н. Лобзов

Физико-технологический институт им. К.А. Валиева РАН

Email: vibachurin@mail.ru

Ярославский филиал

Россия, Ярославль

М. Е. Лебедев

Физико-технологический институт им. К.А. Валиева РАН

Email: vibachurin@mail.ru

Ярославский филиал

Россия, Ярославль

Л. А. Мазалецкий

Физико-технологический институт им. К.А. Валиева РАН

Email: vibachurin@mail.ru

Ярославский филиал 

Россия, Ярославль

Д. Э. Пухов

Физико-технологический институт им. К.А. Валиева РАН

Email: vibachurin@mail.ru

Ярославский филиал 

Россия, Ярославль

А. Б. Чурилов

Физико-технологический институт им. К.А. Валиева РАН

Автор, ответственный за переписку.
Email: vibachurin@mail.ru

Ярославский филиал

Россия, Ярославль

Список литературы

  1. Navez M., Sella C., Chaperot D. // C. R. Acad. Sci. 1962. № 254. P. 240. https://gallica.bnf.fr/ark:/12148/bpt6k3206x/f248.item
  2. Bradley R.M., Harper M.E. // J. Vac. Sci. Technol. A. 1988. V. 6. P. 2390. https://doi.org/10.1116/1.575561
  3. Sigmund P. // J. Mater. Sci. 1973. V. 8. P. 1545. https://doi.org/10.1007/BF00754888
  4. Cuerno R., Kim J.-S. // J. Appl. Phys. 2020. V. 128. P. 180902. https://doi.org/10.1063/5.0021308
  5. Makeev M.A., Cuerno R., Barbasi A. // Nucl. Instrum. Methods Phys. Res. B. 2002. V. 197. P. 185. https://doi.org/10.1016/S0168-583X(02)01436-2
  6. Valbusa U., Borgano C., Mongeot F. // J. Phys.: Condens. Matter. 2002. V. 14. P. 8153. https://doi.org/10.1088/0953-8984/14/35/301
  7. Muñoz-García J., Vázquez L., Castro M., Cago R., Redondo-Cubero A., Moreno-Barrado A., Cuerno R. // Mater. Sci. Eng. R. 2014. V. 86. P. 1. https://doi.org/10.1016/j.mser.2014.09.00
  8. Vázquez L., Redondo-Cubero A., Lorenz K., Palomares F. J., Cuerno R. // J. Phys.: Condens. Matter. 2022. V. 34. P. 333002. https://doi.org/10.1088/1361-648X/ac75a1
  9. Carter G., Vishnyakov V. // Surf. Interface Anal. 1995. V. 23. P. 514. https://doi.org/10.1002/sia.740230711
  10. Elst K., Vandervorst W. // J. Vac. Sci. Technol. A. 1994. V. 12. P. 3205. https://doi.org/10.1116/1.579239
  11. Smirnov V.K., Kibalov D.S., Krivelevich S.A., Lepshin P.A., Potapov E.V., Yankov R.A., Skorupa W., Makarov V.V., Danilin A.B. // Nucl. Instrum. Methods Phys. Res. B. 1999. V. 147. P. 310. https://doi.org/10.1016/S0168-583X(98)00610-7
  12. Hofsäss H. // Appl. Phys. A. 2014. V. 114. P. 401. https://doi.org/10.1007/s00339-013-8170-9
  13. Bobes O., Zhang K., Hofsäss H. // Phys. Rev. B. 2012. V. 86. P. 235414. https://doi.org/10.1103/PhysRevB.86.235414
  14. Carter G., Vishnyakov V. // Phys. Rev. B. 1996. V. 54. P. 17647. https://doi.org/10.1103/PhysRevB.54.17647
  15. Norris S., Brenner M.P., Aziz M.J. // J. Phys.: Condens. Matter. 2009. V. 21. P. 224017. https://doi.org/10.1088/0953-8984/21/22/224017
  16. Norris S., Samela J., Bukonte L., Backman M., Diurabekova F., Nordlund K., Madi C.S., Brenner M.P., Aziz M.J. // Nat. Commun. 2011. V. 2. P. 276. https://doi.org/10.1038/ncomms1280
  17. Eckstein W. Computer Simulation of Ion-Solid Interaction. Berlin: Springer, 1991. 279 p. https://doi.org/10.1007/978-3-642-73513-4
  18. Habenicht S., Lieb K.P., Koch J. Wieck A.D. // Phys. Rev. B. 2002. V. 65. P. 115327. https://doi.org/10.1103/PhysRevB.65.11532
  19. Smirnova M.A., Ivanov A.S., Bachurin V.I., Churilov A.B. // J. Phys.: Conf. Ser. 2021. V. 2086. P. 012210. https://doi.org/10.1088/1742-6596/2086/1/012210
  20. Smirnova M.A., Bachurin V.I., Mazaletsky L.A., Pukhov D.E., Churilov A.B., Rudy A.S. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2021. V. 15. P. 150. https://doi.org/10.1134/S1027451022020380
  21. Smirnova M.A., Bachurin V.I., Lebedev M.E., Mazaletsky L.A., Pukhov D.E., Churilov A.B., Rudy A.S. // Vacuum. 2022. V. 203. P. 111283. https://doi.org/10.1016/j.vacuum.2022.111238
  22. Frey L., Lehrer C., Ryssel H. // Appl. Phys. A. 2003. V. 76. P. 1017. https://doi.org/10.1007/s00339-002-1943-1
  23. Kramczynski D., Reuscher B., Gnaser H. // Phys. Rev. B. 2014. V. 89. P. 205422. https://doi.org/10.1103/PhysRevB.89.205422
  24. Cuerno R., Barabasi A.L. // Phys. Rev. Lett. 1995. V. 74. P. 4746. https://doi.org/10.1103/PhysRevLett.74.4746
  25. Kahng B., Jeong H., Barbasi A.I. // Appl. Phys. Lett. 2001. V. 78. P. 805. https://doi.org/10.1063/1.1343468
  26. Carter G., Nobes M. J., Paton F., Williams J.S., Whitton J.L. // Radiat. Eff. 1977. V. 33. P. 65. https://doi.org/10.1080/00337577708237469
  27. Vishnyakov V., Carter G., Goddard D.T., Nobes M. J. // Vacuum. 1995. V. 46. P. 637. https://doi.org/10.1016/0042-207X(95)00003-8
  28. Carter G., Vishnyakov V., Martynenko Yu.V., Nobes M.J. // J. Appl. Phys. 1995. V. 78. P. 3559. https://doi.org/10.1063/1.359931
  29. Alkemade P.F.A. // Phys. Rev. Lett. 2006. V. 96. P. 107602. https://doi.org/10.1103/PhysRevLett.96.107602
  30. Smirnov V.K., Kibalov D.S., Lepshin P.A., Bachurin V.I. // IzV. Akad. Nauk. Ser. Fiz. 2000. V. 64. P. 626.
  31. Karmakar P., Mollick S.A., Ghose D., Chakrabarti A. // Appl. Phys. Lett. 2008. V. 93. P. 103102. https://doi.org/10.1063/1.2974086
  32. Wittmaack K. // Surf. Interface Anal. 2000. V. 29. P. 721. https://doi.org/10.1002/1096-9918(200010)29: 10<721:: AID-SIA916>3.0.CO;2-Q
  33. Bachurin V.I., Lepshin P.A., Smirnov V.K. // Vacuum. 2000. V. 56. P. 241. https://doi.org/10.1016/S0042-207X(99)00194-3
  34. Bhowmik D., Mukherjee M., Karmakar P. // Nucl. Instrum. Methods B. 2019. V. 444. P. 54. https://doi.org/10.1016/j.nimb.2019.02.010
  35. Bachurin V.I., Zhuravlev I.V., Pukhov D.E., Rudy A.S., Simakin S.G., Smirnova M.A., Churilov A.B. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2020. V. 14. P. 784. https://doi.org/10.1134/S1027451020040229
  36. Rudy A.S., Kulikov A.N., Metlitskaya A.V. // Russ. Microelectron. 2011. V. 40. P. 109. https://doi.org/10.1134/S1063739711020089
  37. Rumyantsev A.V., Borgardt N.I., Volkov R.L. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2018. V. 12. P. 607. https://doi.org/10.1134/S1027451018030345
  38. Erlebacher J., Aziz M.J. // Phys. Rev. Lett. 1999. V. 82. P. 2330. https://doi.org/10.1103/PhysRevLett.82.2330
  39. Yewande E.O., Hartmann A.K., Kree R. // Phys. Rev. B. 2005. V. 71. P. 195405. https://doi.org/10.1103/PhysRevB.71.195405
  40. Aste T., Valbusa U. // New J. Phys. 2005. V. 7. P. 122. https://doi.org/10.1088/1367-2630/7/1/122
  41. Munoz-Garcia J., Castro M., Cuerno R. // Phys. Rev. Lett. 2006. V. 96. P. 086101. https://doi.org/10.1103/PhysRevLett.96.086101
  42. Munoz-Garcia J., Castro M., Cuerno R. // Phys. Rev. B. 2008. V. 78. P. 205408. https://doi.org/10.1103/PhysRevB.78.2054081

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).