Накопление и стирание радиационно-индуцированного заряда в МОП-структурах

Обложка

Цитировать

Полный текст

Аннотация

Показано, что при одновременном воздействии на МОП-структуру (МОП – металл–оксид–полупроводник) радиационных излучений и сильнополевой инжекции электронов часть радиационно-индуцированного положительного заряда может стираться при взаимодействии с инжектированными электронами, и плотность поверхностных состояний может увеличиваться. Эти явления необходимо учитывать при эксплуатации МОП-сенсоров радиационных излучений в режимах сильнополевой инжекции заряда. Проанализированы режимы сильнополевой инжекции, используемые для послерадиационного стирания положительного заряда в МОП-сенсорах. Установлено, что для аннигиляции одной дырки (радиационно-индуцированного положительного заряда) необходимо инжектировать в подзатворный диэлектрик (0.5–2) × 104 электронов, величина электрического поля практически не влияет на процесс стирания радиационно-индуцированного заряда.

Об авторах

Д. В. Андреев

Московский государственный технический университет им. Н.Э. Баумана, Калужский филиал

Автор, ответственный за переписку.
Email: dmitrii_andreev@bmstu.ru
Россия, Калуга

Список литературы

  1. Holmes-Siedle A., Adams L. // Radiat. Phys. Chem. 1986. V. 28. P. 235. https://doi.org/10.1016/1359-0197(86)90134-7
  2. Pejović M.M. // Radiat. Phys. Chem. 2017. V. 130. P. 221. https://doi.org/10.1016/j.radphyschem.2016.08.027
  3. Ristic G.S., Vasovic N.D., Kovacevic M., Jaksic A.B. // Nucl. Instrum. Methods Phys. Res. B. 2011. V. 269. P. 2703. https://doi.org/ 10.1016/j.nimb.2011.08.015
  4. Lipovetzky J., Holmes–Siedle A., Inza M.G., Carbonetto S., Redin E., Faigon A. // IEEE Trans. Nucl. Sci. 2012. V. 59. P. 3133. https://doi.org/10.1109/TNS.2012.2222667
  5. Ristic G.S., Ilic S.D., Andjelkovic M.S., Duane R., Palma A.J., Lalena A.M., Krstic M.D., Jaksic A.B. // Nucl. Instrum. Methods Phys. Res. A. 2022. V. 1029. P. 166473. https://doi.org/10.1016/j.nima.2022.166473
  6. Siebel O.F., Pereira J.G., Souza R.S., Ramirez-Fernandez F.J., Schneider M.C., Galup-Montoro C. // Radiat. Meas. 2015. V. 75. P. 53. https://doi.org/ 10.1016/j.radmeas.2015.03.004
  7. Kulhar M., Dhoot K., Pandya A. // IEEE Trans. Nucl. Sci. 2019. V. 66. P. 2220. https://doi.org/ 10.1109/TNS.2019.2942955
  8. Camanzi B., Holmes-Siedle A.G. // Nature Mater. 2008. V. 7. P. 343. https://doi.org/10.1038/nmat2159
  9. Oldham T.R., McLean F.B. // IEEE Trans. Nucl. Sci. 2003. V. 50. P. 483. https://doi.org/10.1109/TNS.2003.812927
  10. Schwank J.R., Shaneyfelt M.R., Fleetwood D.M., Felix J.A., Dodd P.E., Paillet P., Ferlet-Cavrois V. // IEEE Trans. Nucl. Sci. 2008. V. 55. P. 1833. https://doi.org/10.1109/TNS.2008.2001040
  11. Andreev D.V., Bondarenko G.G., Andreev V.V., Stolya-rov A.A. // Sensors. 2020. V. 20. P. 2382. https://doi.org/10.3390/s20082382
  12. Andreev V.V., Maslovsky V.M., Andreev D.V., Stolyarov A.A. // Proc. SPIE. 2019. V. 11022. P. 1102207. https://doi.org/10.1117/12.2521985
  13. Andreev V.V., Bondarenko G.G., Andreev D.V., Stolyarov A.A. // J. Contemp. Phys. (Armenian Acad. Sci.). 2020. V. 55. P. 144. https://doi.org/10.3103/S106833722002005X
  14. Andreev D.V., Bondarenko G.G., Andreev V.V., Maslovsky V.M., Stolyarov A.A. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2020. V. 14. P. 260. https://doi.org/10.1134/S1027451020020196
  15. Andreev D.V., Bondarenko G.G., Andreev V.V. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2023. V. 17. P. 48. https://doi.org/10.1134/S1027451023010056
  16. Lipovetzky J., Redin E.G., Faigon A. // IEEE Trans. Nucl. Sci. 2007. V. 54. P. 1244. https://doi.org/10.1109/TNS.2007.895122
  17. Peng L., Hu D., Jia Y., Wu Y., An P., Jia G. // IEEE Trans. Nucl. Sci. 2017. V. 64. P. 2633. https://doi.org/10.1109/TNS.2017.2744679
  18. Strong A.W., Wu E.Y., Vollertsen R., Sune J., Rosa G.L., Rauch S.E., Sullivan T.D. Reliability Wearout Mechanisms in Advanced CMOS Technologies. Wiley-IEEE Press, 2009. 624 p.
  19. Palumbo F., Wen C., Lombardo S., Pazos S., Aguirre F., Eizenberg M., Hui F., Lanza M. // Adv. Funct. Mater. 2019. V. 29. P. 1900657. https://doi.org/10.1002/adfm.201900657
  20. Wu E.Y. // IEEE Trans. Electron Devices. 2019. V. 66. P. 4523. https://doi.org/10.1109/TED.2019.2933612
  21. Andreev V.V., Bondarenko G.G., Maslovsky V.M., Stolyarov A.A., Andreev D.V. // Phys. Stat. Sol. C. 2015. V. 12. P. 299. https://doi.org/10.1002/pssc.201400119
  22. Andreev D.V., Maslovsky V.M., Andreev V.V., Stolyarov A.A. // Phys. Stat. Sol. A. 2022. V. 219. P. 2100400. https://doi.org/10.1002/pssa.202100400
  23. Arnold D., Cartier E., DiMaria D.J. // Phys. Rev. B. 1994. V. 49. P. 10278. https://doi.org/10.1103/PhysRevB.49.10278
  24. Lai S.K. // J. Appl. Phys. 1983. V. 54. P. 2540. https://doi.org/10.1063/1.332323
  25. Cerbu F., Madia O., Andreev D.V., Fadida S., Eizenberg M., Breuil L., Lisoni J.G., Kittl J.A., Strand J., Shluger A.L., Afanas'ev V.V., Houssa M., Stesmans A. // Appl. Phys. Lett. 2016. V. 108. P. 222901. https://doi.org/10.1063/1.495271
  26. Fleetwood D.M. // IEEE Trans. Nucl. Sci. 2020. V. 67. P. 1216. https://doi.org/10.1109/TNS.2020.2971861
  27. Zebrev G.I., Orlov V.V., Gorbunov M.S., Drosdetsky M.G. // Microelectron. Reliab. 2018. V. 84. P. 181. https://doi.org/10.1016/j.microrel.2018.03.014

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».