Метод определения ориентации монокристаллов и калибровки энергии рентгеновских лучей при помощи спектра дифракционных потерь

Обложка

Цитировать

Полный текст

Аннотация

Потери интенсивности прошедшего излучения за счет паразитной дифракции (глитчи) – неотъемлемое свойство монокристаллической рентгеновской оптики. Этот эффект может привести к ослаблению излучения, вплоть до его полного исчезновения. Потому понимание эффекта дифракционных потерь является необходимым для любых экспериментов, в которых применяется монокристаллическая оптика. В настоящей работе представлена теория формирования глитчей, а также продемонстрировано ее применение для определения ориентации и параметра решетки оптических элементов, изготовленных из монокристаллического алмаза. Была обнаружена систематическая ошибка в определении абсолютной энергии рентгеновского излучения, возникающая за счет неточной настройки монохроматора (ошибка определения абсолютного угла 2θ). Описываемая ошибка очень часто возникает в процессе эксперимента в результате того, что определение абсолютного угла наклона кристалла монохроматора – технически сложная задача. Одновременное определение ориентации и параметров решетки исследуемого образца вместе с компенсацией систематической ошибки в настройке монохроматора позволило значительно улучшить точность обработки полученных данных.

Об авторах

Н. Б. Климова

Балтийский федеральный университет им. Иммануила Канта

Автор, ответственный за переписку.
Email: klimovanb@gmail.com
Россия, 236014, Калининград

А. А. Снигирев

Балтийский федеральный университет им. Иммануила Канта

Автор, ответственный за переписку.
Email: anatoly.snigirev@gmail.com
Россия, 236014, Калининград

Список литературы

  1. Dobson B.R., Hasnain S.S., Morrell C., Konigsberger D.C., Pandya K., Kampers F., Van Zuylen P., Van Der Hoek M.J. // Rev. Sci. Instrum. 1989. V. 60. P. 2511. https://doi.org/10.1063/1.1140715
  2. Rowen M., Wong J., Tanaka T. // J. Phys. IV France. 1997. V. 7. P. C2. https://doi.org/10.1051/jp4/1997208
  3. Polikarpov M., Emerich H., Klimova N., Snigireva I., Savin V., Snigirev A. // Phys. Stat. Sol. B. 2018. V. 255. P. 1700229. https://doi.org/10.1002/pssb.201700229
  4. Zhang Q., Polikarpov M., Klimova N., Larsen H.B., Mathiesen R., Emerich H., Thorkildsen G., Snigireva I., Snigirev A. // J. Synchrotron Radiat. 2019. V. 26. № 1. P. 109. https://doi.org/10.1107/S1600577518014856
  5. Bauchspiess K.R., Crozier E.D. // EXAFS and Near Edge Structure III. Springer Proceedings in Physics. V. 2 / Ed. Hodgson K.O., Hedman B., Penner-Hahn J.E. Berlin–Heidelberg: Springer, 1984. P. 514. https://doi.org/10.1007/978-3-642-46522-2
  6. Van Zuylen P., Van Der Hoek M.J. // Proc. SPIE. 1986. V. 0733. P. 248. https://doi.org/10.1117/12.964917
  7. Van Der Laan G., Thole B.T // Nucl. Instrum. Methods Phys. Res. A. 1988. V. 263. P. 515. https://doi.org/10.1016/0168-9002(88)90995-3
  8. Kononenko T.V., Ralchenko V.G., Ashkinazi E.E., Polikarpov M., Ershov P., Kuznetsov S., Yunkin V., Snigireva I., Konov V.I. // Appl. Phys. A. 2016. V. 122. P. 1. https://doi.org/10.1007/s00339-016-9683-9
  9. Tang Z., Zheng L., Chu S., Wu M., An P., Zhang L., Hu T. // J. Synchrotron Radiat. 2015. V. 22. P. 1147. https://doi.org/10.1107/S1600577515012345
  10. Monochromator Crystal Glitch Library. Available online: https://www-ssrl.slac.stanford.edu/~xas/glitch/ glitch.html (accessed on 16 March 2021).
  11. Samuel M., Wallace, Marco A.A., Gaillard J.-F. An Algorithm for the Automatic Deglitching of X-Ray Absorption Spectroscopy Data. License CC BY-SA 4.0 2020.
  12. Sutter J.P., Boada R., Bowron D.T., Stepanov S.A., Díaz-Moreno S. // J. Appl. Crystallogr. 2016. V. 49. P. 4. P. 1209. https://doi.org/10.1107/S1600576716009183
  13. Abe H., Aquilanti G., Boada R., Bunker B., Glatzel P., Nachtegaal M., Pascarelli S. // J. Synchrotron Radiat. 2018. V. 25. P. 972. https://doi.org/10.1107/S1600577518006021
  14. Klimova N., Yefanov O., Snigirev A. // AIP Conf. Proc. 2020. V. 2299. P. 060016. https://doi.org/10.1063/5.0030507
  15. Klimova N., Yefanov O., Snigireva I., Snigirev A. // Crystals. 2021. V. 11. № 5. P. 504. https://doi.org/10.3390/cryst11050504
  16. Klimova N., Snigireva I., Snigirev A., Yefanov O. // Crystals. 2021. V. 11. № 12. P. 1561. https://doi.org/10.3390/cryst11121561
  17. Klimova N., Snigireva I., Snigirev A., Yefanov O. // J. Synchrotron Radiat. 2022. V. 29. P. 369. https://doi.org/10.1107/S1600577521013667
  18. Программы для расчета глитчей в монокристаллической рентгеновской оптике: https://github.com/ XrayViz/Glitches.
  19. Yefanov O., Kladko V., Slobodyan M., Polischuk Y. // J. Appl. Crystallogr. 2008. V. 41. P. 647. https://doi.org/10.1107/S0021889808008625
  20. Authier A. // Dynamical Theory of X-Ray Diffraction. Oxford University Press, 2003. P. 661. https://doi.org/10.1093/acprof:oso/9780198528920. 001.0001
  21. Snigirev A., Kohn V., Snigireva I., Lengeler B. // Nature. 1996. V. 384. № 6604. P. 49. https://doi.org/10.1038/384049a0
  22. Schroer C.G., Lengler B., Benner B., Kuhlmann M., Guenzler T.F., Tuemmler J., Rau C., Weitkamp T., Snigirev A., Snigireva I. // Proc. SPIE. 2001. V. 4145. P. 274. https://doi.org/10.1117/12.411647
  23. Polikarpov M., Snigireva I., Morse J., Yunkin V., Kuznetsov S., Snigirev A. // J. Synchrotron Radiat. 2015. V. 22. P. 23. https://doi.org/10.1107/S1600577514021742
  24. Micro Usinage Laser. Available online: http://micro-usinage-laser.com/ (accessed on 16 March 2021).
  25. New Diamond Technology. Available online: http:// ndtcompany.com/ (accessed on 16 March 2021).
  26. Element Six Ltd. Available online: https://www.e6.com/ (accessed on 16 March 2021).
  27. Terentyev S., Blank V., Polyakov S., Zholudev S., Snigirev A., Polikarpov M., Kolodziej T., Qian J., Zhou H., Shvyd’ko Y. // Appl. Phys. Lett. 2015. V. 107. P. 111108. https://doi.org/10.1063/1.4931357

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (446KB)
3.

Скачать (156KB)
4.

Скачать (365KB)
5.

Скачать (275KB)

© Н.Б. Климова, А.А. Снигирев, 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).