ПРЯМАЯ ДОСТАВКА ТЕРАПЕВТИЧЕСКИХ ГЕНОВ ДЛЯ СТИМУЛИРОВАНИЯ ПОСТТРАВМАТИЧЕСКОЙ НЕЙРОРЕГЕНЕРАЦИИ


Цитировать

Полный текст

Аннотация

Проанализированы последние достижения в области прямой, не опосредованной трансплантацией трансфицированных клеток доставки терапевтических генов для стимулирования посттравматической нейрорегенерации. Представлены результаты собственных исследований на двух экспериментальных моделях нейротравмы. Прямая однократная доставка в область повреждения клонированных терапевтических генов человека vegf и fgf2 при помощи невирусного вектора улучшает показатели посттравматической регенерации периферического нерва и спинного мозга. Прямая инъекция плазмидной ДНК непосредственно в область повреждения мало уступает по эффективности доставке тех же терапевтических генов на клеточных носителях при их непосредственной трансплантации в область контузионного повреждения спинного мозга, а по некоторым показателям даже превосходит ее. Перспективы повышения эффективности прямой генной терапии связывают с применением синтетических платформ на основе биосовместимых и биорастворимых материалов.

Об авторах

Юрий Александрович Челышев

Казанский государственный медицинский университет

Email: chelyshev-kzn@yandex.ru
кафедра гистологии, цитологии и эмбриологии; Казанский государственный медицинский университет

Яна Олеговна Мухамедшина

Казанский государственный медицинский университет

кафедра гистологии, цитологии и эмбриологии; Казанский государственный медицинский университет

Гульнара Фердинантовна Шаймарданова

Учреждение Российской академии наук Казанский институт биохимии и биофизики КазНЦ РАН

лаборатория молекулярных основ патогенеза; Учреждение Российской академии наук Казанский институт биохимии и биофизики КазНЦ РАН

Станислав Игоревич Николаев

Казанский государственный медицинский университет

кафедра гистологии, цитологии и эмбриологии; Казанский государственный медицинский университет

Список литературы

  1. Масгутов Р.Ф., Салафутдинов И. И., Богов А.А. и др. Стимуляция посттравматической регенерации седалищного нерва крысы с помощью плазмиды, экспрессирующей сосудистый эндотелиальный фактор роста и основной фактор роста фибробластов // Клеточная трансплантология и тканевая инженерия . - 2011. - Т. 6, № 3. - С. 67-70.
  2. Apfel S.C. Nerve growth factor for the treatment of diabetic neuropathy: what went wrong, what went right, and what does the future hold? // Int Rev Neurobiol. - 2002. - Vol. 50. - P. 393-413.
  3. Bergen J.M., Park I.K., Horner P.J., Pun S.H. Nonviral approaches for neuronal delivery of nucleic acids // Pharm Res. - 2008. - Vol. 25, № 5. - P. 983-998.
  4. Bharali D.J., Klejbor I., Stachowiak E.K. et al. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain // Proc. Natl. Acad. Sci. USA. - 2005. - Vol. 102, № 32. - P. 11539-11544.
  5. Bleiziffer O.E., Friksson E., Yao Fhorch, R.E., Kneser U. Gene transfer strategies in tissue engineering // J. Cell. Mol. Med. - 2007. - Vol. 11, № 2. - P. 206-223.
  6. Bonner J.F., Blesch A., Neuhuber B., Fischer I. Promoting directional axon growth from neural progenitors grafted into the injured spinal cord // J. Neurosci Res. - 2010. - Vol. 88, № 6. - P. 1182-1192.
  7. Chen J., Wu J., Apostolova I., Skup M. et al. Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury // Brain. - 2007. - Vol. 130, № 4. - P. 954-969.
  8. Choi B.H., Ha Y., Ahn C.H. et al. A hypoxia-inducible gene expression system using erythropoietin 3' untranslated region for the gene therapy of rat spinal cord injury // Neurosci Lett. - 2007. - Vol. 412, № 2. - P. 118-122.
  9. Colella P., Auricchio A. AAV-mediated gene supply for treatment of degenerative and neovascular retinal diseases // Curr. Gene Ther. - 2010. - Vol. 10, № 5. - P. 371-380.
  10. da Cruz M.T., Simoes S., de Lima M.C. Improving lipoplex-mediated gene transfer into C6 glioma cells and primary neurons // Exp. Neurol. - 2004. - Vol. 187, № 1. - P. 65-75.
  11. Elouahabi A., Ruysschaert J.M. Formation and intra-cellular trafficking of lipoplexes and polyplexes // Mol Ther. - 2005. - Vol. 11, № 3. - P. 336-347.
  12. Haastert K., Grothe C. Gene therapy in peripheral nerve reconstruction approaches // Curr. Gene Ther. - 2007. - Vol. 7, № 3. - P. 221-228.
  13. Herrera J.J. Sundberg L.M., Zentilin L. et al. Sustained expression of vascular endothelial growth factor and angiopoietin-1 improves blood-spinal cord barrier integrity and functional recovery after spinal cord injury // J. Neurotrauma. - 2010. - Vol. 27, № 11. - P. 2067-2076.
  14. Huang W.C., Kuo H.S., Tsai M.J. et al. Adeno-associated virus-mediated human acidic fibroblast growth factor expression promotes functional recovery of spinal cord-contused rats // J. Gene Med. - 2011. - Vol. 13, № 5. - P. 283-289.
  15. Hung K.S., Tsai S.H., Lee T.C. et al. Gene transfer of insulin-like growth factor-I providing neuroprotection after spinal cord injury in rats // J. Neurosurg Spine. - 2007. - Vol. 6, № 1. - P. 35-46.
  16. Kaech S. Kim J.B., Cariola M., Ralston E. Improved lipid-mediated gene transfer into primary cultures of hippocampal neurons // Brain Res. Mol. Brain Res. - 1996. - Vol. 35, № 1-2. - P. 344-348.
  17. Kane M.J., Citron B.A. Transcription factors as therapeutic targets in CNS disorders // Recent Pat. CNS Drug. Discov. - 2009. - Vol. 4, № 3. - P. 190-199.
  18. Koda M., Hashimoto M., Murakami M. et al. Adenovirus vector-mediated in vivo gene transfer of brain-derived neurotrophic factor (BDNF) promotes rubrospinal axonal regeneration and functional recovery after complete transection of the adult rat spinal cord // J. Neurotrauma. - 2004. - Vol. 21, № 3. - P. 329-337.
  19. Lavdas A.A., Papastefanaki F., Thomaidou D., Matsas R. Cell adhesion molecules in gene and cell therapy approaches for nervous system repair // Curr. Gene Ther. - 2011. - Vol. 11, № 2. - P. 90-100.
  20. Li Y., Wang J., Lee C.G. et al. CNS gene transfer mediated by a novel controlled release system based on DNA complexes of degradable polycation PPE-EA: a comparison with polyethylenimine/DNA complexes // Gene Ther. - 2004. - Vol. 11, № 1. - P. 109-114.
  21. Liu J.L., Ma Q.P., Huang Q.D. et al. Cationic lipids containing protonated cyclen and different hydrophobic groups linked by uracil-PNA monomer: synthesis and application for gene delivery // Eur. J. Med. Chem. - 2011. - Vol. 46, № 9. - P. 4133-4141.
  22. Llorens F., Gil V., del Rнo J.A. Emerging functions of myelin-associated proteins during development, neuronal plasticity, and neurodegeneration // FASEB J. - 2011. - Vol. 25, № 2. - P. 463-475.
  23. Lu K.W., Chen Z.Y., Hou T.S. Protective effect of liposome-mediated glial cell line-derived neurotrophic factor gene transfer in vivo on motoneurons following spinal cord injury in rats // Chin J. Traumatol. - 2004. - Vol. 7, № 5. - P. 275-279.
  24. Luten J. van Nostrum C.F., De Smedt S.C., Hennink W.E. Biodegradable polymers as non-viral carriers for plasmid DNA delivery // J. Control Release. - 2008. - Vol. 126, № 2. - P. 97-110.
  25. Mason M.R., Tannemaat M.R., Malessy M.J., Verhaagen J. Gene therapy for the peripheral nervous system: a strategy to repair the injured nerve // Curr. Gene Ther. - 2011. - Vol. 11, № 2. - P. 75-89.
  26. McDonald C.L., Bandtlow C., Reindl M. Targeting the Nogo receptor complex in diseases of the central nervous system // Curr Med Chem. - 2011. - Vol. 18, № 2. - P. 234-244.
  27. Moore D.L., Goldberg J.L. Multiple transcription factor families regulate axon growth and regeneration // Dev Neurobiol. - 2011. - Vol. 71. - № 12. - P. 1186-1211.
  28. Morris R., Morgan B.S., Lewis T.M. et al. In vivo somatic delivery of plasmid DNA and retrograde transport to obtain cell-specific gene expression in the central nervous system // J. Neurochem. - 2004. - Vol. 90, № 6. - P. 1445-1452.
  29. Nakajima H., Uchida K., Kobayashi S. et al. Rescue of rat anterior horn neurons after spinal cord injury by retrogradetransfection of adenovirus vector carrying brain-derived neurotrophic factor gene // J. Neurotrauma. - 2007. - Vol. 24, № 4. - P. 703-712.
  30. Ohki E.C., Tilkins M.L., Ciccarone V.C., Price P.J. Improving the transfection efficiency of post-mitotic neurons // J. Neurosci Methods. - 2001. - Vol. 112, № 2. - P. 95-99.
  31. Pizzi M.A., Crowe M.J. Transplantation of fibroblasts that overexpress matrix metalloproteinase-3 into the site of spinal cord injury in rats // J. Neurotrauma. - 2006. - Vol. 23, № 12. - P. 1750-1765.
  32. Shi E., Jiang X., Kazui T. et al. Nonviral gene transfer of hepatocyte growth factor attenuates neurologic injury after spinal cord ischemia in rabbits // J. Thorac Cardiovasc Surg. - 2006. - Vol. 132, № 4. - P. 941-947.
  33. Shibata M., Murray M., Tessler A. et al. Single injections of a DNA plasmid that contains the human Bcl-2 gene prevent loss and atrophy of distinct neuronal populations after spinal cord injury in adult rats // Neurorehabil Neural Repair. - 2000. - Vol. 14, № 4. - P. 319-330.
  34. Takahashi K., Schwarz E., Ljubetic C. et al. DNA plasmid that codes for human Bcl-2 gene preserves axotomized Clarke's nucleus neurons and reduces atrophy after spinal cord hemisection in adult rats // J. Comp Neurol. - 1999. - Vol. 404, № 2. - P. 159-171.
  35. Usachev Y.M., Khammanivong A., Campbell C. et al. Particle-mediated gene transfer to rat neurons in primary culture // Pflugers Arch. - 2000. - Vol. 439, № 6. - P. 730-738.
  36. Washbourne P., McAllister A.K. Techniques for gene transfer into neurons // Curr. Opin. Neurobiol. - 2002. - Vol. 12, № 5. - P. 566-573.
  37. Wiesenhofer B., Humpel C. Lipid-mediated gene transfer into primary neurons using FuGene: comparison to C6 glioma cells and primary glia // Exp. Neurol. - 2000. - Vol. 164. - № 1. - P. 38-44.
  38. Xiang J.J., Tang J.Q., Zhu S.G. et al. IONP-PLL: a novel non-viral vector for efficient gene delivery // J. Gene Med. - 2003. - Vol. 5, № 9. - P. 803-817.
  39. Yukawa Y., Lou J., Fukui N., Lenke L.G. Optimal treatment timing to attenuate neuronal apoptosis via Bcl-2 gene transfer in vitro and in vivo // J. Neurotrauma. - 2002. - Vol. 19, № 9. - P. 1091-1103.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Челышев Ю.А., Мухамедшина Я.О., Шаймарданова Г.Ф., Николаев С.И., 2012

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».