电离辐射诱导皮肤损伤模型中注射抗坏血酸后角质形成细胞增殖与凋亡的形态计量学指标

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

论证。文献中已报道多种电离辐射类型对皮肤造成的辐射性损伤和纤维化表现。与其他类型电离辐射相比,电子束对健康器官的细胞毒性相对较低,但其副作用尚未被充分研究。在恶性肿瘤治疗和经皮照射过程中,保护表皮和真皮免受电子束细胞毒性影响仍是重要任务。

目的:在电离辐射诱导皮肤损伤的实验模型中,评估注射抗坏血酸后角质形成细胞增殖与凋亡的形态计量学特征。

方法。本研究为单中心前瞻性对照实验。研究对象为Wistar雄性大鼠(9–10周龄,体重220±20克)股外侧皮肤组织的切片。动物(n=50)随机分为四个实验组:I组 — 对照组(n=20);II组 — 局部电子束照射,剂量为40 Gy(n=10);III组 — 照射前腹腔注射抗坏血酸50 mg/kg,随后接受40 Gy电子束照射(n=10);IV组 — 单独注射抗坏血酸,未进行照射(n=10)。于照射后第10天采集照射区域皮肤样本,进行组织学与免疫组织化学检测(使用Ki-67和caspase-3抗体)。

结果。在使用NOVAC-11(意大利)直线加速器进行40 Gy电子束照射10天后,照射区域出现典型的辐射性皮肤损伤征象,包括湿性脱屑、水肿、基底层部分脱落、真表皮连接区形成微小空腔、大部分皮脂腺受损,以及丙二醛含量与超氧化物歧化酶活性失衡。Ki-67和caspase-3的表达结果显示角质形成细胞的增殖能力降低,凋亡增强。然而,在照射前给予抗坏血酸处理的动物中,角质形成细胞的增殖与凋亡指标以及表皮厚度均接近对照组水平。

结论。研究结果表明,在40 Gy局部电子束照射条件下,抗坏血酸对表皮具有较高的辐射防护效能。抗坏血酸通过减少自由基介导的氧化损伤,并诱导超氧化物歧化酶的表达,从而防止辐射诱导的角质形成细胞凋亡。

作者简介

Grigory A. Demyashkin

National Medical Research Radiological Center of the Ministry of Health of the Russian Federation; The First Sechenov Moscow State Medical University

编辑信件的主要联系方式.
Email: dr.dga@mail.ru
ORCID iD: 0000-0001-8447-2600
SPIN 代码: 5157-0177

Dr. Sci. (Medicine)

俄罗斯联邦, Moscow; Moscow

Matvey A. Vadyukhin

The First Sechenov Moscow State Medical University

Email: vma20@mail.ru
ORCID iD: 0000-0002-6235-1020
SPIN 代码: 9485-7722
俄罗斯联邦, Moscow

Anna K. Marukyan

The First Sechenov Moscow State Medical University

Email: Marukyan87@mail.ru
ORCID iD: 0000-0002-4619-7385
SPIN 代码: 4320-6507
俄罗斯联邦, Moscow

Susanna V. Saakyan

The First Sechenov Moscow State Medical University

Email: drsaakyan@icloud.com
ORCID iD: 0000-0001-8606-8716
SPIN 代码: 7742-1420
俄罗斯联邦, Moscow

Elza B. Karakaeva

The First Sechenov Moscow State Medical University

Email: kchr09@mail.ru
ORCID iD: 0000-0001-9833-3433
SPIN 代码: 8221-3003
俄罗斯联邦, Moscow

Sergey N. Koryakin

National Medical Research Radiological Center of the Ministry of Health of the Russian Federation

Email: korsernic@mail.ru
ORCID iD: 0000-0003-0128-4538
SPIN 代码: 8153-5789

Cand. Sci. (Biology)

俄罗斯联邦, Moscow

Elena Y. Shapovalova

V.I. Vernadsky Crimean Federal University

Email: shapovalova_l@mail.ru
ORCID iD: 0000-0003-2544-7696
SPIN 代码: 5321-1246

Dr. Sci. (Medicine), Professor

俄罗斯联邦, Simferopol

Alexey A. Kantorovich

The First Sechenov Moscow State Medical University

Email: w.q.989@mail.ru
ORCID iD: 0009-0007-9370-3600
俄罗斯联邦, Moscow

Anastasiia S. Andrievskikh

The First Sechenov Moscow State Medical University

Email: Andrievskikh2002@mail.ru
ORCID iD: 0009-0007-1787-5910
俄罗斯联邦, Moscow

参考

  1. Voshart DC, Wiedemann J, van Luijk P, Barazzuol L. Regional responses in radiation-induced normal tissue damage. Cancers (Basel). 2021;13(3):367. doi: 10.3390/cancers13030367 EDN: NIYBVY
  2. Reisz JA, Bansal N, Qian J, et al. Effects of ionizing radiation on biological molecules--mechanisms of damage and emerging methods of detection. Antioxid Redox Signal. 2014;21(2):260–292. doi: 10.1089/ars.2013.5489 EDN: UTDMBT
  3. Wang L, Lin B, Zhai M, et al. Deteriorative Effects of radiation injury combined with skin wounding in a mouse model. Toxics. 2022;10(12):785. doi: 10.3390/toxics10120785 EDN: DBGZGI
  4. Demyashkin G, Shapovalova Y, Marukyan A, et al. Immunohistochemical and histochemical analysis of the rat skin after local electron irradiation. Open Vet J. 2023;13(12):1570–1582. doi: 10.5455/OVJ.2023.v13.i12.7 EDN: YFSLDE
  5. Wieland LS, Moffet I, Shade S, et al. Risks and benefits of antioxidant dietary supplement use during cancer treatment: protocol for a scoping review. BMJ Open. 2021;11(4):e047200. doi: 10.1136/bmjopen-2020-047200 EDN: DTTCEQ
  6. Attia AA, Hamad HA, Fawzy MA, Saleh SR. The prophylactic effect of vitamin C and vitamin B12 against ultraviolet-C-induced hepatotoxicity in male rats. Molecules. 2023;28(11):4302. doi: 10.3390/molecules28114302 EDN: FYZPGK
  7. Sato T, Kinoshita M, Yamamoto T, et al. Treatment of irradiated mice with high-dose ascorbic acid reduced lethality. PLoS One. 2015;10(2):e0117020. doi: 10.1371/journal.pone.0117020
  8. Demyashkin GA, Atyakshin DA, Yakimenko VA, et al. Characteristics of proliferation and apoptosis of hepatocytes after administration of ascorbic acid in a model of radiation hepatitis. Morphology. 2023;161(3):31–38. (In Russ.) doi: 10.17816/morph.624714 EDN: LDQCJS
  9. King M, Joseph S, Albert A, et al. Use of Amifostine for cytoprotection during radiation therapy: A review. Oncology. 2020;98(2):61–80. doi: 10.1159/000502979
  10. Kawashima S, Funakoshi T, Sato Y, et al. Protective effect of pre- and post-vitamin C treatments on UVB-irradiation-induced skin damage. Sci Rep. 2018;8(1):16199. doi: 10.1038/s41598-018-34530-4 EDN: ONLVLU
  11. Ravetti S, Clemente C, Brignone S, et al. Ascorbic acid in skin health. Cosmetics. 2019;6(4):58. doi: 10.3390/cosmetics6040058
  12. Cox JD, Stetz J, Pajak TF. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys. 1995;31(5):1341–1346. doi: 10.1016/0360-3016(95)00060-C EDN: APLAHB
  13. Williams JP, Newhauser W. Normal tissue damage: its importance, history and challenges for the future. Br J Radiol. 2019;92(1093):20180048. doi: 10.1259/bjr.20180048 EDN: WXTPZI
  14. Zhao H, Zhuang Y, Li R, et al. Effects of different doses of X-ray irradiation on cell apoptosis, cell cycle, DNA damage repair and glycolysis in HeLa cells. Oncol Lett. 2019;17(1):42–54. doi: 10.3892/ol.2018.9566
  15. Nuszkiewicz J, Woźniak A, Szewczyk-Golec K. Ionizing radiation as a source of oxidative stress-the protective role of melatonin and vitamin D. Int J Mol Sci. 2020;21(16):5804. doi: 10.3390/ijms21165804 EDN: KOENZI
  16. Jiao Y, Cao F, Liu H. Radiation-induced cell death and its mechanisms. Health Phys. 2022;123(5):376–386. doi: 10.1097/HP.0000000000001601 EDN: SAYLYY
  17. Bontempo PSM, Ciol MA, Menêses AG, et al. Acute radiodermatitis in cancer patients: incidence and severity estimates. Rev Esc Enferm USP. 2021;55:e03676. doi: 10.1590/S1980-220X2019021703676 EDN: JAVVIL
  18. Bromberger L, Heise B, Felbermayer K, et al. Radiation-induced alterations in multi-layered, in-vitro skin models detected by optical coherence tomography and histological methods. PLoS One. 2023;18(3):e0281662. doi: 10.1371/journal.pone.0281662 EDN: ZXDUWC
  19. Kim JS, Park SH, Jang WS, et al. Gamma-ray-induced skin injury in the mini-pig: Effects of irradiation exposure on cyclooxygenase-2 expression in the skin. J Radiat Prot Res. 2015;40(1):65–72. doi: 10.14407/jrp.2015.40.1.065
  20. Kim JS, Jang H, Bae MJ, et al. Comparison of skin injury induced by β- and γ-irradiation in the minipig model. J Radiat Prot Res. 2017;42(4):189–196. doi: 10.14407/jrpr.2017.42.4.189
  21. Calvo FA, Serrano J, Cambeiro M, et al. Intra-operative electron radiation therapy: An update of the evidence collected in 40 years to search for models for Electron-FLASH studies. Cancers (Basel). 2022;14(15):3693. doi: 10.3390/cancers14153693 EDN: CQBIEW
  22. Gęgotek A, Skrzydlewska E. Antioxidative and anti-inflammatory activity of ascorbic acid. Antioxidants (Basel). 2022;11(10):1993. doi: 10.3390/antiox11101993 EDN: BZOSDJ

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Skin fragments from rats on day 10 of the experiment: a, control group (group 1); b, after a single electron irradiation at a dose of 40 Gy (group 2); c, after ascorbic acid administration prior to irradiation (group 3). Hematoxylin and eosin staining; magnification ×100; scale bar 50 µm.

下载 (354KB)
3. Fig. 2. Skin fragments on day 10 of the experiment, immunohistochemical analysis with Mayer’s hematoxylin counterstaining: a–c, Ki-67 antibodies; d–f, caspase-3 antibodies; a, d, control group (1); b, e, after a single electron irradiation at a dose of 40 Gy (group 2); c, f, after ascorbic acid administration prior to irradiation (group 3). Magnification ×400; scale bar 50 µm.

下载 (603KB)

版权所有 © Eco-Vector, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».