Morphometric parameters of keratinocyte proliferation and apoptosis following ascorbic acid administration in radiation-induced skin injury

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

BACKGROUND: Available publications describe the features of radiation-induced skin injury and fibrosis caused by various types of ionizing radiation. Compared with other forms of ionizing radiation, electrons exhibit relatively low cytotoxicity to healthy organs; however, their side effects remain insufficiently explored. One of the key objectives is to develop protective strategies for the epidermis and dermis against electron-induced cytotoxicity during the treatment of malignant tumors and percutaneous tumor exposure.

AIM: The work aimed to perform a morphometric assessment of keratinocyte proliferation and apoptosis following ascorbic acid administration in an experimental model of radiation-induced skin injury.

METHODS: A single-center, prospective, controlled study was conducted. The study object was skin fragments from the outer surface of the thigh of male Wistar rats (aged 9–10 weeks, weighing 220 ± 20 g). Animals (n = 50) were randomly divided into four experimental groups: group 1, controls (n = 20); group 2, local electron irradiation at a dose of 40 Gy (n = 10); group 3, administration of ascorbic acid (intraperitoneally, 50 mg/kg) prior to local electron irradiation at a dose of 40 Gy (n = 10); group 4, administration of ascorbic acid without irradiation (n = 10). After 10 days, skin samples from the irradiated area were harvested for histological and immunohistochemical analysis (using Ki-67 and caspase-3 antibodies).

RESULTS: Ten days after local electron irradiation with the NOVAC-11 linear accelerator (Italy) at a dose of 40 Gy, the exposed skin areas showed signs of radiation-induced injury: moist desquamation, edema, partial desquamation of the basal epidermal layer, formation of microcavities at the dermoepidermal junction, damage to most sebaceous glands, and imbalance in malondialdehyde content and superoxide dismutase activity. Results of Ki-67 and caspase-3 expression analysis revealed reduced keratinocyte proliferative activity and increased apoptosis. However, in animals pretreated with ascorbic acid, the levels of keratinocyte proliferation and apoptosis, as well as epidermal thickness, were comparable to those in the control group.

CONCLUSION: The findings demonstrate the high radioprotective efficacy of ascorbic acid for the epidermis under local electron irradiation at a dose of 40 Gy. Ascorbic acid prevents radiation-induced apoptotic death of keratinocytes by reducing oxidative damage caused by free radicals and by inducing superoxide dismutase expression.

Sobre autores

Grigory Demyashkin

National Medical Research Radiological Center of the Ministry of Health of the Russian Federation; The First Sechenov Moscow State Medical University

Autor responsável pela correspondência
Email: dr.dga@mail.ru
ORCID ID: 0000-0001-8447-2600
Código SPIN: 5157-0177

Dr. Sci. (Medicine)

Rússia, Moscow; Moscow

Matvey Vadyukhin

The First Sechenov Moscow State Medical University

Email: vma20@mail.ru
ORCID ID: 0000-0002-6235-1020
Código SPIN: 9485-7722
Rússia, Moscow

Anna Marukyan

The First Sechenov Moscow State Medical University

Email: Marukyan87@mail.ru
ORCID ID: 0000-0002-4619-7385
Código SPIN: 4320-6507
Rússia, Moscow

Susanna Saakyan

The First Sechenov Moscow State Medical University

Email: drsaakyan@icloud.com
ORCID ID: 0000-0001-8606-8716
Código SPIN: 7742-1420
Rússia, Moscow

Elza Karakaeva

The First Sechenov Moscow State Medical University

Email: kchr09@mail.ru
ORCID ID: 0000-0001-9833-3433
Código SPIN: 8221-3003
Rússia, Moscow

Sergey Koryakin

National Medical Research Radiological Center of the Ministry of Health of the Russian Federation

Email: korsernic@mail.ru
ORCID ID: 0000-0003-0128-4538
Código SPIN: 8153-5789

Cand. Sci. (Biology)

Rússia, Moscow

Elena Shapovalova

V.I. Vernadsky Crimean Federal University

Email: shapovalova_l@mail.ru
ORCID ID: 0000-0003-2544-7696
Código SPIN: 5321-1246

Dr. Sci. (Medicine), Professor

Rússia, Simferopol

Alexey Kantorovich

The First Sechenov Moscow State Medical University

Email: w.q.989@mail.ru
ORCID ID: 0009-0007-9370-3600
Rússia, Moscow

Anastasiia Andrievskikh

The First Sechenov Moscow State Medical University

Email: Andrievskikh2002@mail.ru
ORCID ID: 0009-0007-1787-5910
Rússia, Moscow

Bibliografia

  1. Voshart DC, Wiedemann J, van Luijk P, Barazzuol L. Regional responses in radiation-induced normal tissue damage. Cancers (Basel). 2021;13(3):367. doi: 10.3390/cancers13030367 EDN: NIYBVY
  2. Reisz JA, Bansal N, Qian J, et al. Effects of ionizing radiation on biological molecules--mechanisms of damage and emerging methods of detection. Antioxid Redox Signal. 2014;21(2):260–292. doi: 10.1089/ars.2013.5489 EDN: UTDMBT
  3. Wang L, Lin B, Zhai M, et al. Deteriorative Effects of radiation injury combined with skin wounding in a mouse model. Toxics. 2022;10(12):785. doi: 10.3390/toxics10120785 EDN: DBGZGI
  4. Demyashkin G, Shapovalova Y, Marukyan A, et al. Immunohistochemical and histochemical analysis of the rat skin after local electron irradiation. Open Vet J. 2023;13(12):1570–1582. doi: 10.5455/OVJ.2023.v13.i12.7 EDN: YFSLDE
  5. Wieland LS, Moffet I, Shade S, et al. Risks and benefits of antioxidant dietary supplement use during cancer treatment: protocol for a scoping review. BMJ Open. 2021;11(4):e047200. doi: 10.1136/bmjopen-2020-047200 EDN: DTTCEQ
  6. Attia AA, Hamad HA, Fawzy MA, Saleh SR. The prophylactic effect of vitamin C and vitamin B12 against ultraviolet-C-induced hepatotoxicity in male rats. Molecules. 2023;28(11):4302. doi: 10.3390/molecules28114302 EDN: FYZPGK
  7. Sato T, Kinoshita M, Yamamoto T, et al. Treatment of irradiated mice with high-dose ascorbic acid reduced lethality. PLoS One. 2015;10(2):e0117020. doi: 10.1371/journal.pone.0117020
  8. Demyashkin GA, Atyakshin DA, Yakimenko VA, et al. Characteristics of proliferation and apoptosis of hepatocytes after administration of ascorbic acid in a model of radiation hepatitis. Morphology. 2023;161(3):31–38. (In Russ.) doi: 10.17816/morph.624714 EDN: LDQCJS
  9. King M, Joseph S, Albert A, et al. Use of Amifostine for cytoprotection during radiation therapy: A review. Oncology. 2020;98(2):61–80. doi: 10.1159/000502979
  10. Kawashima S, Funakoshi T, Sato Y, et al. Protective effect of pre- and post-vitamin C treatments on UVB-irradiation-induced skin damage. Sci Rep. 2018;8(1):16199. doi: 10.1038/s41598-018-34530-4 EDN: ONLVLU
  11. Ravetti S, Clemente C, Brignone S, et al. Ascorbic acid in skin health. Cosmetics. 2019;6(4):58. doi: 10.3390/cosmetics6040058
  12. Cox JD, Stetz J, Pajak TF. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys. 1995;31(5):1341–1346. doi: 10.1016/0360-3016(95)00060-C EDN: APLAHB
  13. Williams JP, Newhauser W. Normal tissue damage: its importance, history and challenges for the future. Br J Radiol. 2019;92(1093):20180048. doi: 10.1259/bjr.20180048 EDN: WXTPZI
  14. Zhao H, Zhuang Y, Li R, et al. Effects of different doses of X-ray irradiation on cell apoptosis, cell cycle, DNA damage repair and glycolysis in HeLa cells. Oncol Lett. 2019;17(1):42–54. doi: 10.3892/ol.2018.9566
  15. Nuszkiewicz J, Woźniak A, Szewczyk-Golec K. Ionizing radiation as a source of oxidative stress-the protective role of melatonin and vitamin D. Int J Mol Sci. 2020;21(16):5804. doi: 10.3390/ijms21165804 EDN: KOENZI
  16. Jiao Y, Cao F, Liu H. Radiation-induced cell death and its mechanisms. Health Phys. 2022;123(5):376–386. doi: 10.1097/HP.0000000000001601 EDN: SAYLYY
  17. Bontempo PSM, Ciol MA, Menêses AG, et al. Acute radiodermatitis in cancer patients: incidence and severity estimates. Rev Esc Enferm USP. 2021;55:e03676. doi: 10.1590/S1980-220X2019021703676 EDN: JAVVIL
  18. Bromberger L, Heise B, Felbermayer K, et al. Radiation-induced alterations in multi-layered, in-vitro skin models detected by optical coherence tomography and histological methods. PLoS One. 2023;18(3):e0281662. doi: 10.1371/journal.pone.0281662 EDN: ZXDUWC
  19. Kim JS, Park SH, Jang WS, et al. Gamma-ray-induced skin injury in the mini-pig: Effects of irradiation exposure on cyclooxygenase-2 expression in the skin. J Radiat Prot Res. 2015;40(1):65–72. doi: 10.14407/jrp.2015.40.1.065
  20. Kim JS, Jang H, Bae MJ, et al. Comparison of skin injury induced by β- and γ-irradiation in the minipig model. J Radiat Prot Res. 2017;42(4):189–196. doi: 10.14407/jrpr.2017.42.4.189
  21. Calvo FA, Serrano J, Cambeiro M, et al. Intra-operative electron radiation therapy: An update of the evidence collected in 40 years to search for models for Electron-FLASH studies. Cancers (Basel). 2022;14(15):3693. doi: 10.3390/cancers14153693 EDN: CQBIEW
  22. Gęgotek A, Skrzydlewska E. Antioxidative and anti-inflammatory activity of ascorbic acid. Antioxidants (Basel). 2022;11(10):1993. doi: 10.3390/antiox11101993 EDN: BZOSDJ

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Skin fragments from rats on day 10 of the experiment: a, control group (group 1); b, after a single electron irradiation at a dose of 40 Gy (group 2); c, after ascorbic acid administration prior to irradiation (group 3). Hematoxylin and eosin staining; magnification ×100; scale bar 50 µm.

Baixar (354KB)
3. Fig. 2. Skin fragments on day 10 of the experiment, immunohistochemical analysis with Mayer’s hematoxylin counterstaining: a–c, Ki-67 antibodies; d–f, caspase-3 antibodies; a, d, control group (1); b, e, after a single electron irradiation at a dose of 40 Gy (group 2); c, f, after ascorbic acid administration prior to irradiation (group 3). Magnification ×400; scale bar 50 µm.

Baixar (603KB)

Declaração de direitos autorais © Eco-Vector, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».