Morphological evaluation of the colonic mucosa in chronic slow-transit constipation based on immunohistochemical study
- Authors: Chumasov E.I.1,2, Samedov V.B.3, Petrova E.S.1, Kolos E.A.1, Korzhevsky D.E.1
-
Affiliations:
- Institute of Experimental Medicine
- St. Petersburg State University of Veterinary Medicine
- Kirov Military Medical Academy
- Issue: Vol 164, No 1 (2026)
- Pages: 75-88
- Section: Clinical case reports
- URL: https://ogarev-online.ru/1026-3543/article/view/373768
- DOI: https://doi.org/10.17816/morph.678813
- EDN: https://elibrary.ru/DJSPXC
- ID: 373768
Cite item
Abstract
Major pathological processes, primarily inflammatory ones, are associated with disruption of the barrier function of the gastrointestinal mucosa. The structures of the nervous system that interact with cells of innate and adaptive immunity and modulate intestinal function remain insufficiently studied.
This work aimed to examine the human colonic mucosa in chronic slow-transit constipation (CSTC) using five clinical cases and to characterize the relationships between the mucosa, neural, and glial structures.
Immunohistochemical examination was performed on fragments of the descending colon mucosa obtained during surgical treatment of patients with severe CSTC. To identify inflammatory and immune cells, toluidine blue staining was used along with antibodies to CD68 and Iba-1 (ionized calcium-binding adaptor molecule 1) — macrophage markers; tryptase — a mast cell marker; PGP 9.5 (protein gene product 9.5), synaptophysin, and tyrosine hydroxylase — to detect neural structures; S100β protein — a glial marker; and serotonin and chromogranin A — markers of enterochromaffin cells.
In all examined cases of CSTC, hypertrophy of the lamina propria and leukocytic infiltrates were detected in the colonic mucosa, consisting mainly of blast forms of lymphocytic and monocyte–macrophage lineages (Iba-1⁺ and CD68⁺ cells), as well as mast cells. It was established that the innervation of the mucosal tissues involves postganglionic cholinergic fibers originating from neurons of the submucosal plexus microganglia. They are forming en passant terminal synaptic networks composed of varicose axonal bundles and accompanying neurolemmocytes. Close intercellular interactions were observed between parasympathetic nerve endings and glial elements, as well as immune–inflammatory cells. There was no sympathetic innervation of the mucosal tissues.
The presence of leukocytic infiltrates in the colonic mucosa of patients with CSTC, its intense innervation, and the accumulation of enterochromaffin cells in the epithelium indicate neurogenic inflammation. The inflammation affects the permeability of the enteral epithelium and modulates immune responses aimed at maintaining tissue homeostasis and restoring the barrier function of the intestinal wall mucosa in CSTC.
About the authors
Evgenii I. Chumasov
Institute of Experimental Medicine; St. Petersburg State University of Veterinary Medicine
Author for correspondence.
Email: ua1сt@mail.ru
ORCID iD: 0000-0003-4859-6766
SPIN-code: 2569-9148
Dr. Sci. (Biology), professor
Russian Federation, Saint Petersburg; Saint PetersburgVadim B. Samedov
Kirov Military Medical Academy
Email: samedov07@rambler.ru
ORCID iD: 0000-0002-4002-6913
SPIN-code: 1969-3264
Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgElena S. Petrova
Institute of Experimental Medicine
Email: iemmorphol@yandex.ru
ORCID iD: 0000-0003-0972-8658
SPIN-code: 3973-1421
Cand. Sci. (Biology)
Russian Federation, Saint PetersburgElena A. Kolos
Institute of Experimental Medicine
Email: koloselena1984@yandex.ru
ORCID iD: 0000-0002-9643-6831
SPIN-code: 1479-5992
Russian Federation, Saint Petersburg
Dmitry E. Korzhevsky
Institute of Experimental Medicine
Email: dek2@yandex.ru
ORCID iD: 0000-0002-2456-8165
MD, Dr. Sci. (Medicine), professor
Russian Federation, Saint PetersburgReferences
- Ivashkin VT, Shelygin YuA, Maev IV, et al. Clinical recommendations of the Russian Gastroenterological Association and Association of Coloproctologists of Russia on diagnosis and treatment of constipation in adults. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2020;30(6):69–85. doi: 10.22416/1382-4376-2020-30-6-69-85 EDN: AWWWDP
- Romashchenko PN, Maistrenko NA, Samedov VB. Chronic slow-transit constipation: aspects of diagnosis and surgical treatment. Taurida Medico-Biological Bulletin. 2022;25(2):90–97. doi: 10.37279/2070-8092-2022-25-2-90-97 EDN: ZZMIVZ
- Samedov VB, Romashchenko PN, Revin GO. Justification of the diagnostic algorithm and treatment strategies in patients with severe chronic slow-transit constipation. Bulletin of the Russian Military Medical Academy. 2021;23(3):75–82. doi: 10.17816/brmma74259 EDN: EBYLJT
- Iakupova AA, Abdulkhakov SR, Zalyalov RK, et al. Intestinal permeability assays: A review. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2021;31(1):20–30. doi: 10.22416/1382-4376-2021-31-1-20-30 EDN: ABYDRV
- Bernardelli LI, Mavlikeev MO, Zavialova TP, et al. Morphological analysis of the components of the muco-epithelial barrier in inflammatory bowel diseases. In: Modern aspects of human morphology, pathomorphology and oncopathology. Collection of scientific articles based on the materials of the International Scientific and Methodological Conference dedicated to the year of fundamental sciences. Kursk: Kurskij gosudarstvennyj medicinskij universitet, 2022. P. 43–54. doi: 10.21626/cb.22.humanmorphology/04 EDN: AOHNSX
- Churkova ML, Kostyukevich SV. The epithelium mucosal of colon in normal and in functional and inflammatory bowel diseases. Experimental and Clinical Gastroenterology. 2018;153(5):128–132. (In Russ.)
- Mabbott NA, Donaldson DS, Ohno H, et al. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 2013;6(4):666–677. doi: 10.1038/mi.2013.30 EDN: RNXDTJ
- Bernstein CN, Forbes JD. Gut microbiome in inflammatory bowel disease and other chronic immune-mediated inflammatory diseases. Inflamm Intest Dis. 2017;2(2):116–123. doi: 10.1159/000481401
- Goll R, van Beelen Granlund A. Intestinal barrier homeostasis in inflammatory bowel disease. Scand J Gastroenterol. 2015;50(1):3–12. doi: 10.3109/00365521.2014.971425
- Murai A, Kitahara K, Terada H, et al. Ingestion of paddy rice increases intestinal mucin secretion and goblet cell number and prevents dextran sodium sulfate-induced intestinal barrier defect in chickens. Poult Sci. 2018;97(10):3577–3586. doi: 10.3382/ps/pey202
- Rahman AA, Robinson AM, Jovanovska V, et al. Alterations in the distal colon innervation in Winnie mouse model of spontaneous chronic colitis. Cell Tissue Res. 2015;362(3):497–512. doi: 10.1007/s00441-015-2251-3 EDN: CYDUMW
- Sherwin E, Bordenstein SR, Quinn JL, et al. Microbiota and the social brain. Science. 2019;366(6465):eaar2016. doi: 10.1126/science.aar2016 EDN: AFMGJN
- Chumasov EI, Romashchenko PN, Maistrenko NA, et al. Pathohistological study of the ganglion plexuses of the sigmoid colon in patients with chronic slow-transit constipation. Bulletin of the Russian Military Medical Academy. 2021;3(75):117–124. doi: 10.17816/brmma75673 EDN: EIHBZS
- Chumasov EI, Maistrenko NA, Romashchenko PN, et al. Pathological changes in glial cells in the enteric nervous system of the colon with chronic slow-transit constipation. The Siberian Scientific Medical Journal. 2023;43(6):191–202. doi: 10.18699/SSMJ20230624 EDN: UJBNIO
- Chumasov EI, Maistrenko NA, Romashchenko PN, et al. Immunohistochemical study of the sympathetic innervation of the colon in chronic slow-transit constipation. Experimental and Clinical Gastroenterology Journal. 2022;11(207):191–197. doi: 10.31146/1682-8658-ecg-207-11-191-197 EDN: PXTDXG
- Potemin SN. Chronic slowly transient colonostasis: mechanisms of development and possibilities of surgical treatment. Scientific Review. Medical Sciences. 2016;6:84–103. (In Russ.)
- Bassotti G, Villanacci V, Creţoiu D, et al. Cellular and molecular basis of chronic constipation: taking the functional/idiopathic label out. World J Gastroenterol. 2013;19(26):4099–4105. doi: 10.3748/wjg.v19.i26.4099
- Bund T, Nikitina E, Chakraborty D, et al. Analysis of chronic inflammatory lesions of the colon for BMMF Rep antigen expression and CD68 macrophage interactions. Proc Natl Acad Sci U S A. 2021;118(12):e2025830118. doi: 10.1073/pnas.2025830118 EDN: OVFFOR
- Seika P, Janikova M, Asokan S, et al. Free heme exacerbates colonic injury induced by anti-cancer therapy. Front Immunol. 2023;14:1184105. doi: 10.3389/fimmu.2023.1184105 EDN: CLYFWU
- Xu HC, Wu RL, Jiang ZW, et al. Study on the mechanism of electroacupuncture regulating macrophage polarization to improve ulcerative colitis in rats. Zhen Ci Yan Jiu. 2023;48(10):1033–1040. doi: 10.13702/j.1000-0607.20230286
- Kolos EA, Korzhevskii DE. Spinal cord microglia in health and disease. Acta Naturae. 2020;12(1):4–17. doi: 10.32607/actanaturae.10934 EDN: LLOOOZ
- Grigorev IP, Korzhevskii DE. Modern imaging technologies of mast cells for biology and medicine (Review). Sovrem Tekhnologii Med. 2021;13(4):93–107. doi: 10.17691/stm2021.13.4.10 EDN: ISEQWB
- Chumasov EI, Petrova ES, Kolos EA, Korzhevskii DE. Study of the nerve apparatus and mast cells in the hearts of old rats. Advances in Gerontology. 2021;11:29–36. doi: 10.1134/S2079057021010355
- Chumasov EI, Petrova ES, Korzhevskii DE. Study of the rat duodenal innervation using neural immunohistochemical markers. Russian Journal of Physiology. 2020;106(7):853–865. doi: 10.31857/S086981392007002X EDN: XGGZHF
- Diwakarla S, Fothergill LJ, Fakhry J, et al. Heterogeneity of enterochromaffin cells within the gastrointestinal tract. Neurogastroenterol Motil. 2017;29(6):10.1111/nmo.13101. doi: 10.1111/nmo.13101
- Hunne B, Stebbing MJ, McQuade RM, Furness JB. Distributions and relationships of chemically defined enteroendocrine cells in the rat gastric mucosa. Cell Tissue Res. 2019;378(1):33–48. doi: 10.1007/s00441-019-03029-3
- Nagata K, Fujimiya M, Sugiura H, Uehara M. Intracellular localization of serotonin in mast cells of the colon in normal and colitis rats. Histochem J. 2001;33(9–10):559–568. doi: 10.1023/a:1014960026247 EDN: AUXTRF
- Spencer SP, Fragiadakis GK, Sonnenburg JL. Pursuing human-relevant gut microbiota-immune interactions. Immunity. 2019;51(2):225–239. doi: 10.1016/j.immuni.2019.08.002 EDN: AVSYEI
- Vanuytsel T, Vanormelingen C, Vanheel H, et al. From intestinal permeability to dysmotility: the biobreeding rat as a model for functional gastrointestinal disorders. PLoS One. 2014;9(10):e111132. doi: 10.1371/journal.pone.0111132
- Korneva EA, Klimenko VM, Shkhinek EK. Neurohumoral maintenance of immune homeostasis. Leningrad: Nauka, 1978. (In Russ.)
- Seguella L, Gulbransen BD. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat Rev Gastroenterol Hepatol. 2021;18(8):571–587. doi: 10.1038/s41575-021-00423-7 EDN: AVYATK
- Masliukov PM, Budnik AF, Nozdrachev AD. Neurochemical features of metasympathetic system ganglia in the course of ontogenesis. Adv Gerontol. 2017;7(4):281–289. doi: 10.1134/S2079057017040087 EDN: XXGXFR
- Lomax AE, Sharkey KA, Furness JB. The participation of the sympathetic innervation of the gastrointestinal tract in disease states. Neurogastroenterol Motil. 2010;22(1):7–18. doi: 10.1111/j.1365-2982.2009.01381.x
- Meroni E, Stakenborg N, Viola MF, Boeckxstaens GE. Intestinal macrophages and their interaction with the enteric nervous system in health and inflammatory bowel disease. Acta Physiol (Oxf). 2019;225(3):e13163. doi: 10.1111/apha.13163
- Báez-Pagán CA, Delgado-Vélez M, Lasalde-Dominicci JA. Activation of the Macrophage α7 nicotinic acetylcholine receptor and control of inflammation. J Neuroimmune Pharmacol. 2015;10(3):468–476. doi: 10.1007/s11481-015-9601-5 EDN: XYTJLN
- Xu Y, Jia J, Xie C, et al. Transient receptor potential ankyrin 1 and substance P mediate the development of gastric mucosal lesions in a water immersion restraint stress rat model. Digestion. 2018;97(3):228–239. doi: 10.1159/000484980
Supplementary files
