Detection of tumor-associated tryptase-positive mast cells in sporadic medullary thyroid carcinoma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: There are currently no published studies on the role of mast cells in the pathogenesis of sporadic medullary thyroid carcinoma. However, their involvement in the progression of a variety of epithelial malignant neoplasms has been demonstrated. Furthermore, mast cell count may be an independent predictor of long-term progression-free survival in patients with pancreatic neuroendocrine tumors.

AIM: The work aimed to evaluate the potential of immunohistochemical detection of mast cells in the tumor microenvironment in sporadic medullary thyroid carcinoma.

METHODS: Histological specimens of sporadic medullary thyroid carcinoma were assessed using immunohistochemical detection of tryptase in mast cells. A convolutional neural network (CNN) model was then trained to segment positively stained cells, followed by quantitative analysis of the results.

RESULTS: Several potentially clinically significant parameters were identified, including correlations between mast cell count in the thyroid stroma and age; correlations between intratumoral mast cell count and T stage according to the TNM (8th edition) classification; and patterns of mast cell colocalization with other cells of the tumor microenvironment.

CONCLUSION: The study confirmed the presence of mast cells in the stroma of medullary thyroid carcinoma and revealed quantitative differences depending on tumor size. The observed active interactions of mast cells with atypical cells of sporadic medullary thyroid carcinoma and other components of the tumor microenvironment are a significant criterion for interpreting the biological effects of mast cells in this tumor type. These findings warrant further analysis to develop diagnostic algorithms and improve prognostic accuracy.

About the authors

Ekaterina V. Bondarenko

Endocrinology Research Center

Author for correspondence.
Email: ekaterinabondarenko@inbox.ru
ORCID iD: 0000-0003-2122-2297
SPIN-code: 3564-7654

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Maxim V. Balyasin

Peoples’ Friendship University of Russia

Email: b.maxim4432@yandex.ru
ORCID iD: 0000-0002-3097-344X
SPIN-code: 9738-4520
Russian Federation, Moscow

Andrey A. Kostin

Peoples’ Friendship University of Russia

Email: andocrey@mail.ru
ORCID iD: 0000-0002-1330-1756
SPIN-code: 8073-0899
Russian Federation, Moscow

Anastassia Chevais

Endocrinology Research Center

Email: Anastassia93@gmail.com
ORCID iD: 0000-0001-5592-4794
SPIN-code: 2459-0540
Russian Federation, Moscow

Alexander V. Alekhnovich

Peoples’ Friendship University of Russia

Email: alekhnovich_av@pfur.ru
ORCID iD: 0000-0002-8942-2984
SPIN-code: 5903-1260
Russian Federation, Moscow

Fatima M. Abdulkhabirova

Endocrinology Research Center

Email: abdulkhabirova@endocrincentr.ru
ORCID iD: 0000-0001-8580-2421
SPIN-code: 2462-1115
Russian Federation, Moscow

Dmitrii A. Atiakshin

Peoples’ Friendship University of Russia

Email: atyakshin_da@pfur.ru
ORCID iD: 0000-0002-8347-4556
SPIN-code: 3830-8152
Russian Federation, Moscow

References

  1. World Health Organization Classification of Tumours Editorial Board. Endocrine and neuroendocrine tumors. 5th ed., volume 10. Lyon: International Agency for Research on Cancer; 2022. ISBN: 978-92-832-4524-7
  2. Kalezic NK, Zivaljevic VR, Slijepcevic NA, et al. Risk factors for sporadic medullary thyroid carcinoma. Eur J Cancer Prev. 2013;22(3):262–267. doi: 10.1097/CEJ.0b013e3283592c78
  3. Severskaya NV, Choinzonov EL, Reshetov IV, et al. Draft of clinical guidelines for the diagnosis and treatment of medullary thyroid cancer in adult patients. Endocrine Surgery. 2022;16(3):5–23. doi: 10.14341/serg12794 EDN: MFOERC
  4. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133. doi: 10.1089/thy.2015.0020 EDN: WPDQNF
  5. Tuttle RM, Haddad RI, Ball DW, et al. Thyroid carcinoma, version 2.2014. J Natl Compr Canc Netw. 2014;12(12):1671–1680. doi: 10.6004/jnccn.2014.0169 EDN: URGZPB
  6. Filetti S, Durante C, Hartl D, et al. Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2019;30(12):1856–1883. doi: 10.1093/annonc/mdz400 EDN: DMSFQH
  7. Ito Y, Onoda N, Okamoto T. The revised clinical practice guidelines on the management of thyroid tumors by the Japan Associations of Endocrine Surgeons: Core questions and recommendations for treatments of thyroid cancer. Endocr J. 2020;67(7):669–717. doi: 10.1507/endocrj.EJ20-0025 EDN: XXCPXR
  8. Kondratovich VA, Zhukovets AG, Leonova TA. Clinical and epidemiological characteristics and prognosis of the clinical course of medullary thyroid cancer. Oncological Journal. 2021;15(2(58)):13–18. EDN: XJHYAZ
  9. Xu B, Fuchs TL, Ahmadi S, et al. International medullary thyroid carcinoma grading system: A validated grading system for medullary thyroid carcinoma. J Clin Oncol. 2022;40(1):96–104. doi: 10.1200/JCO.21.01329 EDN: ZCTDKB
  10. Chekmaryova I, Kalinin D, Kostin A, et al. Ultrastructural features of tumor-associated mast cells in parasympathetic paragangliomas (chemodectomas) of the neck. Microsc Res Tech. 2024;87(6):1373–1383. doi: 10.1002/jemt.24523 EDN: QXKVON
  11. Zdor VV, Geltser BI, Eliseikina MG, et al. Roles of Thyroid hormones, mast cells, and inflammatory mediators in the initiation and progression of autoimmune thyroid diseases. Int Arch Allergy Immunol. 2020;181(9):715–726. doi: 10.1159/000508937 EDN: WWQSQQ
  12. Landucci E, Laurino A, Cinci L, et al. Thyroid hormone, thyroid hormone metabolites and mast cells: A less explored issue. Front Cell Neurosci. 2019;13:79. doi: 10.3389/fncel.2019.00079 EDN: PPJSBV
  13. Toda S, Tokuda Y, Koike N, et al. Growth factor-expressing mast cells accumulate at the thyroid tissue-regenerative site of subacute thyroiditis. Thyroid. 2000;10(5):381–386. doi: 10.1089/thy.2000.10.381
  14. Visciano C, Prevete N, Liotti F, Marone G. Tumor-associated mast cells in thyroid cancer. Int J Endocrinol. 2015;2015:705169. doi: 10.1155/2015/705169
  15. Atiakshin D, Kostin A, Buchwalow I, et al. Protease profile of tumor-associated mast cells in melanoma. Int J Mol Sci. 2022;23(16):8930. doi: 10.3390/ijms23168930 EDN: XOLAVO
  16. Elieh-Ali-Komi D, Shafaghat F, Alipoor SD, et al. Immunomodulatory significance of mast cell exosomes (MC-EXOs) in immune response coordination. Clin Rev Allergy Immunol. 2025;68(1):20. doi: 10.1007/s12016-025-09033-6 EDN: DFCNXO
  17. Timofeeva NYu, Bubnova NV, Samakina ES, et al. The role of mast cells in carcinogenesis (Literature review). Acta Medica Eurasica. 2023;(1):147–159. doi: 10.47026/2413-4864-2023-1-147-159 EDN: SRCDPL
  18. Komi DEA, Redegeld FA. Role of mast cells in shaping the tumor microenvironment. Clin Rev Allergy Immunol. 2020;58(3):313–325. doi: 10.1007/s12016-019-08753-w EDN: WMYJLA
  19. Melillo RM, Guarino V, Avilla E, et al. Mast cells have a protumorigenic role in human thyroid cancer. Oncogene. 2010;29(47):6203–6215. doi: 10.1038/onc.2010.348 EDN: NYRPZP
  20. Nilsson M, Williams D. On the origin of cells and derivation of thyroid cancer: C cell story revisited. Eur Thyroid J. 2016;5(2):79–93. doi: 10.1159/000447333
  21. Mo S, Zong L, Chen X, et al. High mast cell density predicts a favorable prognosis in patients with pancreatic neuroendocrine neoplasms. Neuroendocrinology. 2022;112(9):845–855. doi: 10.1159/000521651 EDN: XMDRYK
  22. Meng D. et al. Identification of the Immune subtypes for the prediction of Metastasis in pancreatic neuroendocrine tumors. Neuroendocrinology. 2023;113(7):719–735. doi: 10.1159/000529966 EDN: BDOASF
  23. Buchwalow I, Samoilova V, Boecker W, Tiemann M. Non-specific binding of antibodies in immunohistochemistry: fallacies and facts. Sci Rep. 2011;1:28. doi: 10.1038/srep00028
  24. Bankhead P, Loughrey MB, Fernández JA, et al. QuPath: Open source software for digital pathology image analysis. Sci Rep. 2017;7(1):16878. doi: 10.1038/s41598-017-17204-5 EDN: GXCDYW
  25. Pettersen HS, Belevich I, Røyset ES, et al. Code-free development and deployment of deep segmentation models for digital pathology. Front Med (Lausanne). 2022;8:816281. doi: 10.3389/fmed.2021.816281 EDN: UMGPVC

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).