Cell therapy of radiation injury in experimental models

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Considering their significant histophysiological effects, stem cells and extracellular vesicles are a promising approach in both military and civilian medicine for the treatment of acute radiation syndrome. This review aimed to summarize experimental data on the potential use of stem cells and their extracellular vesicles in radiation injuries. A systematic review was conducted to evaluate the efficacy of transplanting various types of cells (mesenchymal, hematopoietic, and neural stem cells, as well as progenitor cells) and extracellular vesicles in experimental radiation injury. The analysis included 13 Russian-language and 96 international publications from January 2002 to April 2024.

The review discusses the cellular effects observed in experimental models of radiation injuries and local radiation exposure at doses ranging from 1 Gy to 110 Gy. It summarizes the therapeutic effects of stem cells and extracellular vesicles, particularly their influence on stem cell niches. The primary mechanism behind this therapy is a paracrine effect mediated by extracellular vesicles. This paracrine action enhances the survival of endogenous stem cells while reducing their apoptosis. This cell therapy has been shown to increase survival of animals with bone marrow and intestine radiation injuries and accelerate recovery from local radiation injuries.

In recent decades, mesenchymal stromal cell transplantation has been the primary focus of research owing to its efficacy in hematological, intestinal, and cerebral acute radiation syndromes. Its therapeutic action is mediated through the suppression of inflammation and modulation of the microenvironment of endogenous stem cells, thereby improving their survival and reducing apoptosis.

About the authors

Vladimir V. Chrishtop

Kirov Military Medical Academy

Email: chrishtop@mail.ru
ORCID iD: 0000-0002-9267-5800
SPIN-code: 3734-5479

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Pavel S. Pashchenko

Kirov Military Medical Academy

Email: pashchenkops@mail.ru
ORCID iD: 0009-0007-4987-9262
SPIN-code: 1035-3261

MD, Dr. Sci. (Medicine), professor

Russian Federation, Saint Petersburg

Alexey V. Anisin

Kirov Military Medical Academy

Email: av.anisin@mail.ru

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Tatyana S. Spirina

Saint-Petersburg State University; Almazov National Medical Research Centre

Author for correspondence.
Email: ScoX1@rambler.ru
ORCID iD: 0000-0002-1188-7204
SPIN-code: 1048-9599

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg; Saint Petersburg

Maria G. Gaivoronskaya

Saint-Petersburg State University; Almazov National Medical Research Centre

Email: solnushko12@mail.ru
ORCID iD: 0000-0003-4992-9702
SPIN-code: 2357-5440

MD, Dr. Sci. (Medicine), assistant professor

Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Karamullin MA, Chepur SV, Samokhvalov IM, et al. Clinical guidelines for prevention, diagnostics, treatment and recovery from acute radiation injuries: Classification and basic pathology. Bulletin of the Russian Military Medical Academy. 2024;26(1):87–100. doi: 10.17816/brmma595865 EDN: CWKBIF
  2. Ude CC, Miskon A, Idrus RBH, Abu Bakar MB. Application of stem cells in tissue engineering for defense medicine. Mil Med Res. 2018;5(1):7. doi: 10.1186/s40779-018-0154-9 EDN: UUJVTU
  3. Samoylov AS, Konchalovsky MV, Bushmanov AYu, et al. Recommendations for the diagnosis and treatment of bone marrow form of acute radiation syndrome. Russian Journal of Hematology and Transfusiology. 2023;68(1):98–128. doi: 10.35754/0234-5730-2023-68-1-98-128 EDN: NONQCI
  4. Thierry D, Bertho JM, Chapel A, Gourmelon P. Cell therapy for the treatment of accidental radiation overexposure. British Journal of Radiology. 2005;78(suppl 27):175–179. doi: 10.1259/bjr/90209767
  5. Singh VK., Brown DS, Kao TC, Seed TM Preclinical development of a bridging therapy for radiation casualties. Exp Hematol. 2010;38(1):61–70. doi: 10.1016/j.exphem.2009.10.008
  6. Qian L, Cen J. Hematopoietic stem cells and mesenchymal stromal cells in acute radiation syndrome. Oxid Med Cell Longev. 2020;2020:8340756. doi: 10.1155/2020/8340756 EDN: ZVJLWZ
  7. Lange C. Mesenchymal stromal cells protect from acute radiation syndromes: Insights into possible mechanisms. Medical-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2015;1:58–70. doi: 10.25016/2541-7487-2015-0 EDN: TZKLQN
  8. McGuirk JP, Smith JR, Divine CL, et al. Wharton’s jelly-derived mesenchymal stromal cells as a promising cellular therapeutic strategy for the management of graft-versus-host capacity. Pharmaceuticals (Basel). 2015;8(2):196–220. doi: 10.3390/ph8020196
  9. Rodgerson DO, Reidenberg BE, Harris AG, Pecora AL. Potential for a pluripotent adult stem cell treatment for acute radiation sickness. World J Exp Med. 2012;2(3):37–44. doi: 10.5493/wjem.v2.i3.37
  10. Hérodin F, Drouet M. Cytokine-based treatment of accidentally irradiated victims and new approaches. Exp Hematol. 2005;33(10):1071–1080. doi: 10.1016/j.exphem.2005.04.007 EDN: MJGAYN
  11. Singh VK, Christensen J, Fatanmi OO, et al. Myeloid progenitors: a radiation countermeasure that is effective when initiated days after irradiation. Radiat Res. 2012;177(6):781–791. doi: 10.1667/rr2894.1
  12. Bandekar M, Maurya DK, Sharma D, Sandur SK. Preclinical studies and clinical prospects of Wharton’s jelly-derived MSC for treatment of acute radiation syndrome. Curr Stem Cell Rep. 2021;7(2):85–94. doi: 10.1007/s40778-021-00188-4 EDN: SQEDSN
  13. Singh VK, Wise SY, Fatanmi OO, et al. Progenitors mobilized by gamma-tocotrienol as an effective radiation countermeasure. PLoS One. 2014;9(11):e114078. doi: 10.1371/journal.pone.0114078 EDN: YCJMTB
  14. Singh VK, Kulkarni S Fatanmi OO, et al. Radioprotective efficacy of Gamma-Tocotrienol in nonhuman primates. Radiat Res. 2016;185(3):285–298. doi: 10.1667/RR14127.1
  15. Singh VK, Seed TM. Development of gammatocotrienol as a radiation medical countermeasure for the acute radiation syndrome: current status and future perspectives. Expert Opin Investig Drugs. 2023;32(1):25–35. doi: 10.1080/13543784.2023.2169127 EDN: HUUUAM
  16. Nicolay NH, Lopez Perez R, Saffrich R Huber PE. Radio-resistant mesenchymal stem cells: mechanisms of resistance and potential implications for the clinic. Oncotarget. 2015;6(23):19366–19380. doi: 10.18632/oncotarget.4358 EDN: SOVJET
  17. Rühle A, Xia O, Perez RL, et al. The radiation resistance of human multipotent mesenchymal stromal cells is independent of their tissue of origin. Int J Radiat Oncol Biol Phys. 2018;100(5):1259–1269. doi: 10.1016/j.ijrobp.2018.01.015 EDN: YEFOMH
  18. Kiang JG. Mesenchymal stem cells and exosomes in tissue regeneration and remodeling: characterization and therapy. In: Gorbunov NV, editor. Tissue Barriers in Disease, Injury and Regeneration. Amsterdam: Elseiver; 2021. P:159–185. doi: 10.1016/B978-0-12-818561-2.00005-9 EDN: UPEUKU
  19. Dong LH, Jiang YY, Liu YJ et al. The anti-fibrotic effects of mesenchymal stem cells on irradiated lungs via stimulating endogenous secretion of HGF and PGE2. Sci Rep. 2015;5:8713. doi: 10.1038/srep08713
  20. Xu S, Liu C, Ji HL. Concise review: Therapeutic potential of the mesenchymal stem cell derived secretome and extracellular vesicles for radiation-induced lung injury: progress and hypotheses. Stem Cells Transl Med. 2019;8(4):344–354. doi: 10.1002/sctm.18-0038
  21. Willis GR, Fernandez-Gonzalez A, Anastas J, et al. mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med. 2018:197(1):104–116. doi: 10.1164/rccm.201705-0925OC
  22. Yang X, Balakrishnan I, Torok-Storb B, Pillai MM. Marrow stromal cell infusion rescues hematopoiesis in lethally irradiated mice despite rapid clearance after infusion. Adv Hematol. 2012;2012:142530. doi: 10.1155/2012/142530 EDN: GTJPVI
  23. Chapel A, Bertho JM, Bensidhoum M, et al. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J Gene Med. 2003;5(12):1028–1038. doi: 10.1002/jgm.452 EDN: LNDVJH
  24. Mourcin F, Grenier N Mayol JF et al. Mesenchymal stem cells support expansion of in vitro irradiated CD34(+) cells in the presence of SCF, FLT3 ligand, TPO and IL3: potential application to autologous cell therapy in accidentally irradiated victims. Radiat Res. 2005;164(1):1–9. doi: 10.1667/rr3384 EDN: LNDVKB
  25. Fouillard L, Francois S, Bouchet S, et al. Innovative cell therapy in the treatment of serious adverse events related to both chemo-radiotherapy protocol and acute myeloid leukemia syndrome: the infusion of mesenchymal stem cells post-treatment reduces hematopoietic toxicity and promotes hematopoietic reconstitution. Curr Pharm Biotechnol. 2013;14(9):842–848. doi: 10.2174/1389201014666131227120222
  26. Carrancio S, Romo C, Ramos T, et al. Effects of MSC coadministration and route of delivery on cord blood hematopoietic stem cell engraftment. Cell Transplant. 2013;22(7):1171–1183. doi: 10.3727/096368912X657431
  27. Lange C, Brunswig-Spickenheier B, Cappallo-Obermann H, et al. Radiation rescue: mesenchymal stromal cells protect from lethal irradiation. PLoS One. 2011;6(1):e14486. doi: 10.1371/journal.pone.0014486
  28. Hu KX, Sun QY, Guo M, Ai HS. The radiation protection and therapy effects of mesenchymal stem cells in mice with acute radiation injury. Br J Radiol. 2010;83(985):52–58. doi: 10.1259/bjr/61042310
  29. Saha P, Bhanja R, Kabarriti L, et al. Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice. PLoS One. 2011;6(9):e24072. doi: 10.1371/journal.pone.0024072
  30. Zheng K, Wu W, Yang S, et al. Treatment of radiation-induced acute intestinal injury with bone marrow-derived mesenchymal stem cells. Exp Ther Med. 2016;11(6):2425–2431. doi: 10.3892/etm.2016.3248
  31. Sémont A, Mouiseddine M, Francois A, et al. Mesenchymal stem cells improve small intestinal integrity through regulation of endogenous epithelial cell homeostasis. Cell Death Differ. 2010;17(6):952–961. doi: 10.1038/cdd.2009.187
  32. Gong W, Guo M, Han Z, et al. Mesenchymal stem cells stimulate intestinal stem cells to repair radiation-induced intestinal injury. Cell Death Dis. 2016;7(9):e2387. doi: 10.1038/cddis.2016.276
  33. Francois S, Mouiseddine M, Allenet-Lepage B, et al. Human mesenchymal stem cells provide protection against radiation-induced liver injury by antioxidative process, vasculature protection, hepatocyte differentiation, and trophic effects. Biomed Res Int. 2013;2013:151679. doi: 10.1155/2013/151679
  34. Moussa L, Usunier B, Demarquay C, et al. Bowel radiation injury: complexity of the pathophysiology and promises of cell and tissue engineering. Cell Transplant. 2016;25(10):1723–1746. doi: 10.3727/096368916X691664 EDN: XTVYCF
  35. Forcheron F, Agay D, Scherthan H, et al. Autologous adipocyte derived stem cells favour healing in a minipig model of cutaneous radiation syndrome. PLoS One. 2012;7(2):e31694. doi: 10.1371/journal.pone.0031694
  36. François S, Mouiseddine M., Mathieu N., et al. Human mesenchymal stem cells favour healing of the cutaneous radiation syndrome in a xenogenic transplant model. Ann Hematol. 2007;86(1):1–8. doi: 10.1007/s00277-006-0166-5 EDN: ALJTPX
  37. Horton JA, Hudak KE, Chung EJ, et al. Mesenchymal stem cells inhibit cutaneous radiation-induced fibrosis by suppressing chronic inflammation. Stem Cells. 2013;31(10):2231–2241. doi: 10.1002/stem.1483 EDN: SOKVMJ
  38. Ramdasi S, Sarang S, Viswanathan C. Potential of mesenchymal stem cell based application in cancer. Int J Hematol Oncol Stem Cell Res. 2015;9(2):95–103.
  39. Lebedev VG, Deshevoy YB, Temnov AA, et al. Study of the effects of stromal vascular fraction, cultured adipose-derived stem cells, and paracrine factors of a conditioned medium in the treatment of severe radiation injuries of rat skin. Pathological physiology and experimental therapy. 2019;63(1):24–32. doi: 10.25557/0031-2991.2019.01.24-32 EDN: TMAFQY
  40. Soria B, Martin-Montalvo A, Aguilera Y, et al. Human mesenchymal stem cells prevent neurological complications of radiotherapy. Front Cell Neurosci. 2019;13:204. doi: 10.3389/fncel.2019.00204
  41. Liao H, Wang H, Rong X, et al. Mesenchymal stem cells attenuate radiation-induced brain injury by inhibiting microglia pyroptosis. Biomed Res Int. 2017;2017:1948985 doi: 10.1155/2017/1948985
  42. Kiang JG, Jiao W, Cary LH, et al. Wound trauma increases radiation-induced mortality by activation of iNOS pathway and elevation of cytokine concentrations and bacterial infection. Radiat Res. 2010;173(3):319–332. doi: 10.1667/RR1892.1 EDN: NAFBBT
  43. Dennis JE, Carbillet JP, Caplan AI, Charbord P. The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs. 2002;170(2-3):73–82. doi: 10.1159/000046182 EDN: YINEEK
  44. Klein D, Steens J, Wiesemann A, et al. Mesenchymal stem cell therapy protects lungs from radiation-induced endothelial cell loss by restoring Superoxide Dismutase 1 expression. Antioxid Redox Signal. 2017;26(11):563–582. doi: 10.1089/ars.2016.6748
  45. Klein D, Schmetter A, Imsak R, et al. Therapy with multipotent mesenchymal stromal cells protects lungs from radiation-induced injury and reduces the risk of lung metastasis. Antioxid Redox Signal. 2016;24(2):53–69. doi: 10.1089/ars.2014.6183
  46. Mustafin RN, Khusnutdinova EK. Postnatal neurogenesis in the human brain. Morphology. 2021;159(2):37–46. doi: 10.17816/1026-3543-2021-159-2-37-46 EDN: UKMMXQ
  47. Monje ML, Mizumatsu S, Fike JR, Palmer TD. Irradiation induces neural precursor-cell dysfunction. Nat Med. 2002;8(9):955–962. doi: 10.1038/nm749
  48. Yazlovitskaya EM, Edwards E, Thotala D, et al. Lithium treatment prevents neurocognitive deficit resulting from cranial irradiation. Cancer Res. 2006;66(23):11179–11186. doi: 10.1158/0008-5472.CAN-06-2740
  49. Chu C, Gao Y, Lan X, et al. Stem-cell therapy as a potential strategy for radiation-induced brain injury. Stem Cell Rev Rep. 2020;16(4):639–649. doi: 10.1007/s12015-020-09984-7 EDN: XVFAEJ
  50. Acharya MM, Christie LA, Lan ML, Limoli CL. Comparing the functional consequences of human stem cell transplantation in the irradiated rat brain. Cell Transplant. 2013;22(1):55–64. doi: 10.3727/096368912X640565
  51. Acharya MM, Martirosian V, Christie LA, Limoli CL. Long-term cognitive effects of human stem cell transplantation in the irradiated brain. Int J Radiat Biol. 2014;90(9):816–820. doi: 10.3109/09553002.2014.927934
  52. Belkind-Gerson J, Hotta R, Whalen M, et al. Engraftment of enteric neural progenitor cells into the injured adult brain. BMC Neurosci. 2016;17:5. doi: 10.1186/s12868-016-0238-y EDN: LIALFW
  53. Joo KM, Jin J, Kang BG, et al. Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage. PLoS One. 2012;7(2): e25936. doi: 10.1371/journal.pone.0025936 EDN: LGKVKE
  54. Smith SM, Giedzinski E, Angulo MC, et al. Functional equivalence of stem cell and stem cell-derived extracellular vesicle transplantation to repair the irradiated brain. Stem Cells Transl Med. 2020;9(1):93–105. doi: 10.1002/sctm.18-0227 EDN: AYAARO
  55. Nanduri LSY, Duddempudi PK, Yang WL, et al. Extracellular vesicles for the treatment of radiation injuries. Front Pharmacol. 2021;12:662437. doi: 10.3389/fphar.2021.662437 EDN: DQQNRO
  56. Rios C, Jourdain JR, DiCarlo AL. Cellular therapies for treatment of radiation injury after a mass casualty incident. Radiat Res. 2017;188(2):242–245. doi: 10.1667/RR14835.1 EDN: YFLLYY
  57. Chute JP, Muramoto GG, Salter AB, et al. Transplantation of vascular endothelial cells mediates the hematopoietic recovery and survival of irradiated mice. Blood. 2007;109(6):2365–2372. doi: 10.1182/blood-2006-05-022640
  58. Ratajczak J, Wysoczynski M, Zuba-Surma E, et al. Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after coculture over OP9 stromal cells. Exp Hematol. 2011;39(2):225–237 doi: 10.1016/j.exphem.2010.10.007 EDN: OMVSTF
  59. Rodgerson DO, Reidenberg BE, Harris AG, Pecora AL. Potential for a pluripotent adult stem cell treatment for acute radiation sickness. World J Exp Med. 2012;2(3):37–44. doi: 10.5493/wjem.v2.i3.37
  60. Okita K, Yamanaka S. Induced pluripotent stem cells: opportunities and challenges. Philos Trans R Soc Lond B Biol Sci. 2011;366(1575):2198–2207. doi: 10.1098/rstb.2011.0016
  61. Zheng H, Chen Y, Luo Q, et al. Generating hematopoietic cells from human pluripotent stem cells: approaches, progress and challenge. Cell Regen. 2023;12(1):31. doi: 10.1186/s13619-023-00175-6 EDN: RZKJBG
  62. Cichocki F, Goodridge JP, Bjordahl R, et al. Dual antigen-targeted off-the-shelf NK cells show durable response and prevent antigen escape in lymphoma and leukemia. Blood. 2022;140(23):2451–2462. doi: 10.1182/blood.2021015184 EDN: OHIPJU
  63. Montel-Hagen A, Seet CS, Li S, et al. Organoid-Induced differentiation of conventional T cells from human pluripotent stem cells. Cell Stem Cell. 2019;24(3):376–389e8. doi: 10.1016/j.stem.2018.12.011
  64. Nakamura S, Takayama N, Hirata S, et al. Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell. 2014;14(4):535–548. doi: 10.1016/j.stem.2014.01.011
  65. Bandekar M, Maurya DK, Sharma D, Sandur SK. preclinical studies and clinical prospects of Wharton’s jelly-derived MSC for treatment of acute radiation syndrome. Curr Stem Cell Rep. 2021;7(2):85–94. doi: 10.1007/s40778-021-00188-4 EDN: SQEDSN
  66. Welsh JA, Goberdhan DCI, O’Driscoll L, et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles. 2024;13(2):e12404. doi: 10.1002/jev2.12404 EDN: WQKOII
  67. Murzina EV, Pak NV, Aksenova NV, et al. Effectiveness of cell therapy of acute radiation syndrome in mice with intravenous and intraperitoneal administration of a cellular product. Bulletin of the Russian Military Medical Academy. 2024;26(2):169–184. doi: 10.17816/brmma609492 EDN: ZROLAN
  68. Suzuki F, Loucas BD, Ito I, et al. Survival of mice with gastrointestinal acute radiation syndrome through control of bacterial translocation. J Immunol. 2018;201(1):77–86. doi: 10.4049/jimmunol.1701515
  69. Moskvin AA. Biology of extracellular vesicles, their role in the pathogenesis of thrombosis (review). Bulletin of Luhansk State Pedagogical University. Series 4: Biology. Medicine. Chemistry. 2021;3(67):58–67. EDN: ZKWUZC
  70. Di Bella MA. Overview and update on extracellular vesicles: considerations on exosomes and their application in modern medicine. Biology (Basel). 2022;11(6):804. doi: 10.3390/biology11060804 EDN: PTVNUQ
  71. EL Andaloussi S, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347–357. doi: 10.1038/nrd3978 EDN: RHFOLF
  72. Bazzan E, Tinè M, Casara A, et al. Critical Review of the evolution of extracellular vesicles’ knowledge: From 1946 to today. Int J Mol Sci. 2021;22(12):6417. doi: 10.3390/ijms22126417 EDN: GXCWQL
  73. Suprunenko EA, Sazonova EA, Vasiliev AV. Extracellular vesicles of pluripotent stem cells. Ontogenez. 2021;52(3):157–169. doi: 10.31857/S0475145021030071 EDN: RXBPAN
  74. Jeppesen DK, Zhang Q, Franklin JL, Coffey RJ. Extracellular vesicles and nanoparticles: emerging complexities. Trends Cell Biol. 2023;33(8):667–681. doi: 10.1016/j.tcb.2023.01.002 EDN: GXQGJL
  75. Chernov VM, Muzkantov AA, Baranova NB, Chernova OA. Bacterial extracellular vesicles for new technologies in biomedicine: problems and prospects. Bulletin of Biotechnology and Physico-Chemical Biology named after Yu.A. Ovchinnikov. 2022;18(4):48–61. EDN: KAMNOR
  76. He Y, Ren Y, Guo B, et al. Development of a specific nanobody and its application in rapid and selective determination of Salmonella enteritidis in milk. Food Chem. 2020;310:125942. doi: 10.1016/j.foodchem.2019.125942 EDN: TVPVJD
  77. Kudryavtsev IV, Golovkin AS, Totolyan AA. Diagnostic potential of determining individual extracellular vesicles subsets in clinical practice. Complex Issues of Cardiovascular Diseases. 2024;13(3):202–214. doi: 10.17802/2306-1278-2024-13-3-202-214 EDN: JWNRYX
  78. Jeske R, Bejoy J, Marzano M, Li Y. Human pluripotent stem cell-derived extracellular vesicles: Characteristics and applications. Tissue Eng Part B Rev. 2020;26(2):129–144. doi: 10.1089/ten.TEB.2019.0252 EDN: BDAAZY
  79. Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3. doi: 10.3402/jev.v3.24641 EDN: YERXCY
  80. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013; 200(4): 373–383. doi: 10.1083/jcb.201211138
  81. Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–579. doi: 10.1038/nri855
  82. Wiklander OP, Nordin JZ, O’Loughlin A, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles. 2015;4:26316. doi: 10.3402/jev.v4.26316 EDN: TCJZKF
  83. Misawa T, Tanaka Y, Okada R, Takahashi A. Biology of extracellular vesicles secreted from senescent cells as senescenceassociated secretory phenotype factors. Geriatr Gerontol Int. 2020;20(6):539–546. doi: 10.1111/ggi.13928 EDN: SSLXDD
  84. Ferguson SW, Wang J, Lee CJ, et al. The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci Rep. 2018;8(1):1419. doi: 10.1038/s41598-018-19581-x
  85. Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. 2017;35(4):851–858. doi: 10.1002/stem.2575 EDN: YGDAZA
  86. Zhang G, Zou, X, Huang Y, et al. Mesenchymal stromal cell-derived extracellular vesicles protect against acute kidney injury through anti-oxidation by enhancing Nrf2/ARE activation in rats. Kidney Blood Press Res. 2016;41(2):119–128. doi: 10.1159/ 000443413
  87. Wang L, Wei J, Da Fonseca Ferreira A, et al. Rejuvenation of senescent endothelial progenitor cells by extracellular vesicles derived from mesenchymal stromal cells. JACC: Basic Transl Sci. 2020;5(11):1127–1141. doi: 10.1016/j.jacbts.2020.08.005 EDN: YWIMGO
  88. Tan CY, Lai RC, Wong W, et al. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther. 2014;5(3):76. doi: 10.1186/scrt465 EDN: TLHBKA
  89. Accarie A, l’Homme B, Benadjaoud MA, et al. Extracellular vesicles derived from mesenchymal stromal cells mitigate intestinal toxicity in a mouse model of acute radiation syndrome. Stem Cell Res Ther. 2020;11(1):371. doi: 10.1186/s13287-020-01887-1 EDN: JKYBRC
  90. Wong KL, Zhang S, Wang M, et al. Intra-articular injections of mesenchymal stem cell exosomes and hyaluronic acid improve structural and mechanical properties of repaired cartilage in a rabbit model. Arthroscopy. 2020;36(8):2215–2228.e2 doi: 10.1016/j.arthro.2020.03.031 EDN: EUDRRA
  91. Komaki M, Numata Y, Morioka C, et al. Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis. Stem Cell Res Ther. 2017;8(1):219. doi: 10.1186/s13287-017-0660-9 EDN: DZXYNS
  92. Grange C, Tritta S, Tapparo M, et al. Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy. Sci Rep. 2019;9(1):4468. doi: 10.1038/s41598-019-41100-9 EDN: YVWKBM
  93. Xu R, Zhang F, Chai R, et al. Exosomes derived from pro-inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization. J Cell Mol Med. 2019;23(11):7617–7631. doi: 10.1111/jcmm.14635 EDN: EXPGRQ
  94. Schoefinius JS, Brunswig-Spickenheier B, Speiseder T, et al. Mesenchymal stromal cell-derived extracellular vesicles provide long-term survival after total body irradiation without additional hematopoietic stem cell support. Stem Cells. 2017;35(12):2379–2389. doi: 10.1002/stem.2716
  95. Xia C, Chang P, Zhang Y, et al. Therapeutic effects of bone marrow-derived mesenchymal stem cells on radiation-induced lung injury. Oncol Rep. 2016;35(2):731–738. doi: 10.3892/or.2015.4433
  96. Xu T, Zhang Y, Chang P, et al. Mesenchymal stem cell-based therapy for radiation-induced lung injury. Stem Cell Res Ther. 2018;9(1):18. doi: 10.1186/s13287-018-0776-6 EDN: YFLPRJ
  97. Piryani SO, Jiao Y, Kam AYF, et al. Endothelial cell-derived extracellular vesicles mitigate radiation-induced hematopoietic injury. Int J Radiat Oncol Biol Phys. 2019;104(2):291–301. doi: 10.1016/j.ijrobp.2019.02.008
  98. Saha S, Aranda E, Hayakawa Y, et al. Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nat Commun. 2016;7:13096. doi: 10.1038/ncomms13096
  99. Pull SL, Doherty JM, Mills JC, et al. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc Natl Acad Sci U S A. 2005;10(1):99–104. doi: 10.1073/pnas.0405979102
  100. Yan KS, Chia LA, Li X, et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci U S A. 2012;109(2):466–471. doi: 10.1073/pnas.1118857109
  101. Bouchareychas L, Duong P, Covarrubias S, et al. Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via microRNA cargo. Cell Rep. 2020;32(2):107881. doi: 10.1016/j.celrep.2020.107881 EDN: APFGPY
  102. Alchinova IB, Polyakova MV, Yakovenko EN et al. Effect of extracellular vesicles formed by multipotent mesenchymal stromal cells on irradiated animals. Bull Exp Biol Med. 2019;166(4):574–579. doi: 10.1007/s10517-019-04394-3 EDN: CQTRPW
  103. He N, Dong M, Sun Y, et al. Mesenchymal stem cell-derived extracellular vesicles targeting irradiated intestine exert therapeutic effects. Theranostics. 2024;14(14):5492–5511. doi: 10.7150/thno.97623 EDN: ITPWPK
  104. Ratushniak MG, Shaposhnikova DA, Vysotskaia OV. Regulation of the anti-inflammatory activity of microglia and macrophages and the proliferation activity of neural stem cells under the influence of stem cell exosome signals. In: Receptors and Intracellular Signaling. Serpukhov: Tipografiya Pyatyi Format; 2023. P:283–289. (In Russ.)
  105. Zuo R, Liu M, Wang Y, et al. BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/β-catenin signaling. Stem Cell Res Ther. 2019;10(1):30 doi: 10.1186/s13287-018-1121-9 EDN: YZPKXS
  106. Kalmykova NV, Aleksandrova SA. Therapeutic effect of multipotent mesenchymal stromal cells after radiation exposure. Radiation Biology. Radioecology. 2016;56(2):117. (In Russ.) doi: 10.7868/S0869803116020077 EDN: VVHLHR
  107. Legeza VI, Aksenova NV, Murzina EV, et al. Prospects of cell therapy for hematopoietic syndrome of acute radiation sickness. Russian Military Medical Academy Reports. 2022;41(3):335–344. doi: 10.17816/rmmar89691 EDN: HLPUOP
  108. Preciado S, Muntión S, Sánchez-Guijo F. Improving hematopoietic engraftment: Potential role of mesenchymal stromal cell-derived extracellular vesicles. Stem Cells. 2021;39(1):26–32. doi: 10.1002/stem.3278 EDN: NBRNKL

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).