Cell therapy of radiation injury in experimental models
- Authors: Chrishtop V.V.1, Pashchenko P.S.1, Anisin A.V.1, Spirina T.S.2,3, Gaivoronskaya M.G.2,3
-
Affiliations:
- Kirov Military Medical Academy
- Saint-Petersburg State University
- Almazov National Medical Research Centre
- Issue: Vol 164, No 1 (2026)
- Pages: 16-36
- Section: Reviews
- URL: https://ogarev-online.ru/1026-3543/article/view/373763
- DOI: https://doi.org/10.17816/morph.643206
- EDN: https://elibrary.ru/IWAABY
- ID: 373763
Cite item
Abstract
Considering their significant histophysiological effects, stem cells and extracellular vesicles are a promising approach in both military and civilian medicine for the treatment of acute radiation syndrome. This review aimed to summarize experimental data on the potential use of stem cells and their extracellular vesicles in radiation injuries. A systematic review was conducted to evaluate the efficacy of transplanting various types of cells (mesenchymal, hematopoietic, and neural stem cells, as well as progenitor cells) and extracellular vesicles in experimental radiation injury. The analysis included 13 Russian-language and 96 international publications from January 2002 to April 2024.
The review discusses the cellular effects observed in experimental models of radiation injuries and local radiation exposure at doses ranging from 1 Gy to 110 Gy. It summarizes the therapeutic effects of stem cells and extracellular vesicles, particularly their influence on stem cell niches. The primary mechanism behind this therapy is a paracrine effect mediated by extracellular vesicles. This paracrine action enhances the survival of endogenous stem cells while reducing their apoptosis. This cell therapy has been shown to increase survival of animals with bone marrow and intestine radiation injuries and accelerate recovery from local radiation injuries.
In recent decades, mesenchymal stromal cell transplantation has been the primary focus of research owing to its efficacy in hematological, intestinal, and cerebral acute radiation syndromes. Its therapeutic action is mediated through the suppression of inflammation and modulation of the microenvironment of endogenous stem cells, thereby improving their survival and reducing apoptosis.
About the authors
Vladimir V. Chrishtop
Kirov Military Medical Academy
Email: chrishtop@mail.ru
ORCID iD: 0000-0002-9267-5800
SPIN-code: 3734-5479
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgPavel S. Pashchenko
Kirov Military Medical Academy
Email: pashchenkops@mail.ru
ORCID iD: 0009-0007-4987-9262
SPIN-code: 1035-3261
MD, Dr. Sci. (Medicine), professor
Russian Federation, Saint PetersburgAlexey V. Anisin
Kirov Military Medical Academy
Email: av.anisin@mail.ru
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgTatyana S. Spirina
Saint-Petersburg State University; Almazov National Medical Research Centre
Author for correspondence.
Email: ScoX1@rambler.ru
ORCID iD: 0000-0002-1188-7204
SPIN-code: 1048-9599
Cand. Sci. (Biology)
Russian Federation, Saint Petersburg; Saint PetersburgMaria G. Gaivoronskaya
Saint-Petersburg State University; Almazov National Medical Research Centre
Email: solnushko12@mail.ru
ORCID iD: 0000-0003-4992-9702
SPIN-code: 2357-5440
MD, Dr. Sci. (Medicine), assistant professor
Russian Federation, Saint Petersburg; Saint PetersburgReferences
- Karamullin MA, Chepur SV, Samokhvalov IM, et al. Clinical guidelines for prevention, diagnostics, treatment and recovery from acute radiation injuries: Classification and basic pathology. Bulletin of the Russian Military Medical Academy. 2024;26(1):87–100. doi: 10.17816/brmma595865 EDN: CWKBIF
- Ude CC, Miskon A, Idrus RBH, Abu Bakar MB. Application of stem cells in tissue engineering for defense medicine. Mil Med Res. 2018;5(1):7. doi: 10.1186/s40779-018-0154-9 EDN: UUJVTU
- Samoylov AS, Konchalovsky MV, Bushmanov AYu, et al. Recommendations for the diagnosis and treatment of bone marrow form of acute radiation syndrome. Russian Journal of Hematology and Transfusiology. 2023;68(1):98–128. doi: 10.35754/0234-5730-2023-68-1-98-128 EDN: NONQCI
- Thierry D, Bertho JM, Chapel A, Gourmelon P. Cell therapy for the treatment of accidental radiation overexposure. British Journal of Radiology. 2005;78(suppl 27):175–179. doi: 10.1259/bjr/90209767
- Singh VK., Brown DS, Kao TC, Seed TM Preclinical development of a bridging therapy for radiation casualties. Exp Hematol. 2010;38(1):61–70. doi: 10.1016/j.exphem.2009.10.008
- Qian L, Cen J. Hematopoietic stem cells and mesenchymal stromal cells in acute radiation syndrome. Oxid Med Cell Longev. 2020;2020:8340756. doi: 10.1155/2020/8340756 EDN: ZVJLWZ
- Lange C. Mesenchymal stromal cells protect from acute radiation syndromes: Insights into possible mechanisms. Medical-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2015;1:58–70. doi: 10.25016/2541-7487-2015-0 EDN: TZKLQN
- McGuirk JP, Smith JR, Divine CL, et al. Wharton’s jelly-derived mesenchymal stromal cells as a promising cellular therapeutic strategy for the management of graft-versus-host capacity. Pharmaceuticals (Basel). 2015;8(2):196–220. doi: 10.3390/ph8020196
- Rodgerson DO, Reidenberg BE, Harris AG, Pecora AL. Potential for a pluripotent adult stem cell treatment for acute radiation sickness. World J Exp Med. 2012;2(3):37–44. doi: 10.5493/wjem.v2.i3.37
- Hérodin F, Drouet M. Cytokine-based treatment of accidentally irradiated victims and new approaches. Exp Hematol. 2005;33(10):1071–1080. doi: 10.1016/j.exphem.2005.04.007 EDN: MJGAYN
- Singh VK, Christensen J, Fatanmi OO, et al. Myeloid progenitors: a radiation countermeasure that is effective when initiated days after irradiation. Radiat Res. 2012;177(6):781–791. doi: 10.1667/rr2894.1
- Bandekar M, Maurya DK, Sharma D, Sandur SK. Preclinical studies and clinical prospects of Wharton’s jelly-derived MSC for treatment of acute radiation syndrome. Curr Stem Cell Rep. 2021;7(2):85–94. doi: 10.1007/s40778-021-00188-4 EDN: SQEDSN
- Singh VK, Wise SY, Fatanmi OO, et al. Progenitors mobilized by gamma-tocotrienol as an effective radiation countermeasure. PLoS One. 2014;9(11):e114078. doi: 10.1371/journal.pone.0114078 EDN: YCJMTB
- Singh VK, Kulkarni S Fatanmi OO, et al. Radioprotective efficacy of Gamma-Tocotrienol in nonhuman primates. Radiat Res. 2016;185(3):285–298. doi: 10.1667/RR14127.1
- Singh VK, Seed TM. Development of gammatocotrienol as a radiation medical countermeasure for the acute radiation syndrome: current status and future perspectives. Expert Opin Investig Drugs. 2023;32(1):25–35. doi: 10.1080/13543784.2023.2169127 EDN: HUUUAM
- Nicolay NH, Lopez Perez R, Saffrich R Huber PE. Radio-resistant mesenchymal stem cells: mechanisms of resistance and potential implications for the clinic. Oncotarget. 2015;6(23):19366–19380. doi: 10.18632/oncotarget.4358 EDN: SOVJET
- Rühle A, Xia O, Perez RL, et al. The radiation resistance of human multipotent mesenchymal stromal cells is independent of their tissue of origin. Int J Radiat Oncol Biol Phys. 2018;100(5):1259–1269. doi: 10.1016/j.ijrobp.2018.01.015 EDN: YEFOMH
- Kiang JG. Mesenchymal stem cells and exosomes in tissue regeneration and remodeling: characterization and therapy. In: Gorbunov NV, editor. Tissue Barriers in Disease, Injury and Regeneration. Amsterdam: Elseiver; 2021. P:159–185. doi: 10.1016/B978-0-12-818561-2.00005-9 EDN: UPEUKU
- Dong LH, Jiang YY, Liu YJ et al. The anti-fibrotic effects of mesenchymal stem cells on irradiated lungs via stimulating endogenous secretion of HGF and PGE2. Sci Rep. 2015;5:8713. doi: 10.1038/srep08713
- Xu S, Liu C, Ji HL. Concise review: Therapeutic potential of the mesenchymal stem cell derived secretome and extracellular vesicles for radiation-induced lung injury: progress and hypotheses. Stem Cells Transl Med. 2019;8(4):344–354. doi: 10.1002/sctm.18-0038
- Willis GR, Fernandez-Gonzalez A, Anastas J, et al. mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med. 2018:197(1):104–116. doi: 10.1164/rccm.201705-0925OC
- Yang X, Balakrishnan I, Torok-Storb B, Pillai MM. Marrow stromal cell infusion rescues hematopoiesis in lethally irradiated mice despite rapid clearance after infusion. Adv Hematol. 2012;2012:142530. doi: 10.1155/2012/142530 EDN: GTJPVI
- Chapel A, Bertho JM, Bensidhoum M, et al. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J Gene Med. 2003;5(12):1028–1038. doi: 10.1002/jgm.452 EDN: LNDVJH
- Mourcin F, Grenier N Mayol JF et al. Mesenchymal stem cells support expansion of in vitro irradiated CD34(+) cells in the presence of SCF, FLT3 ligand, TPO and IL3: potential application to autologous cell therapy in accidentally irradiated victims. Radiat Res. 2005;164(1):1–9. doi: 10.1667/rr3384 EDN: LNDVKB
- Fouillard L, Francois S, Bouchet S, et al. Innovative cell therapy in the treatment of serious adverse events related to both chemo-radiotherapy protocol and acute myeloid leukemia syndrome: the infusion of mesenchymal stem cells post-treatment reduces hematopoietic toxicity and promotes hematopoietic reconstitution. Curr Pharm Biotechnol. 2013;14(9):842–848. doi: 10.2174/1389201014666131227120222
- Carrancio S, Romo C, Ramos T, et al. Effects of MSC coadministration and route of delivery on cord blood hematopoietic stem cell engraftment. Cell Transplant. 2013;22(7):1171–1183. doi: 10.3727/096368912X657431
- Lange C, Brunswig-Spickenheier B, Cappallo-Obermann H, et al. Radiation rescue: mesenchymal stromal cells protect from lethal irradiation. PLoS One. 2011;6(1):e14486. doi: 10.1371/journal.pone.0014486
- Hu KX, Sun QY, Guo M, Ai HS. The radiation protection and therapy effects of mesenchymal stem cells in mice with acute radiation injury. Br J Radiol. 2010;83(985):52–58. doi: 10.1259/bjr/61042310
- Saha P, Bhanja R, Kabarriti L, et al. Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice. PLoS One. 2011;6(9):e24072. doi: 10.1371/journal.pone.0024072
- Zheng K, Wu W, Yang S, et al. Treatment of radiation-induced acute intestinal injury with bone marrow-derived mesenchymal stem cells. Exp Ther Med. 2016;11(6):2425–2431. doi: 10.3892/etm.2016.3248
- Sémont A, Mouiseddine M, Francois A, et al. Mesenchymal stem cells improve small intestinal integrity through regulation of endogenous epithelial cell homeostasis. Cell Death Differ. 2010;17(6):952–961. doi: 10.1038/cdd.2009.187
- Gong W, Guo M, Han Z, et al. Mesenchymal stem cells stimulate intestinal stem cells to repair radiation-induced intestinal injury. Cell Death Dis. 2016;7(9):e2387. doi: 10.1038/cddis.2016.276
- Francois S, Mouiseddine M, Allenet-Lepage B, et al. Human mesenchymal stem cells provide protection against radiation-induced liver injury by antioxidative process, vasculature protection, hepatocyte differentiation, and trophic effects. Biomed Res Int. 2013;2013:151679. doi: 10.1155/2013/151679
- Moussa L, Usunier B, Demarquay C, et al. Bowel radiation injury: complexity of the pathophysiology and promises of cell and tissue engineering. Cell Transplant. 2016;25(10):1723–1746. doi: 10.3727/096368916X691664 EDN: XTVYCF
- Forcheron F, Agay D, Scherthan H, et al. Autologous adipocyte derived stem cells favour healing in a minipig model of cutaneous radiation syndrome. PLoS One. 2012;7(2):e31694. doi: 10.1371/journal.pone.0031694
- François S, Mouiseddine M., Mathieu N., et al. Human mesenchymal stem cells favour healing of the cutaneous radiation syndrome in a xenogenic transplant model. Ann Hematol. 2007;86(1):1–8. doi: 10.1007/s00277-006-0166-5 EDN: ALJTPX
- Horton JA, Hudak KE, Chung EJ, et al. Mesenchymal stem cells inhibit cutaneous radiation-induced fibrosis by suppressing chronic inflammation. Stem Cells. 2013;31(10):2231–2241. doi: 10.1002/stem.1483 EDN: SOKVMJ
- Ramdasi S, Sarang S, Viswanathan C. Potential of mesenchymal stem cell based application in cancer. Int J Hematol Oncol Stem Cell Res. 2015;9(2):95–103.
- Lebedev VG, Deshevoy YB, Temnov AA, et al. Study of the effects of stromal vascular fraction, cultured adipose-derived stem cells, and paracrine factors of a conditioned medium in the treatment of severe radiation injuries of rat skin. Pathological physiology and experimental therapy. 2019;63(1):24–32. doi: 10.25557/0031-2991.2019.01.24-32 EDN: TMAFQY
- Soria B, Martin-Montalvo A, Aguilera Y, et al. Human mesenchymal stem cells prevent neurological complications of radiotherapy. Front Cell Neurosci. 2019;13:204. doi: 10.3389/fncel.2019.00204
- Liao H, Wang H, Rong X, et al. Mesenchymal stem cells attenuate radiation-induced brain injury by inhibiting microglia pyroptosis. Biomed Res Int. 2017;2017:1948985 doi: 10.1155/2017/1948985
- Kiang JG, Jiao W, Cary LH, et al. Wound trauma increases radiation-induced mortality by activation of iNOS pathway and elevation of cytokine concentrations and bacterial infection. Radiat Res. 2010;173(3):319–332. doi: 10.1667/RR1892.1 EDN: NAFBBT
- Dennis JE, Carbillet JP, Caplan AI, Charbord P. The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs. 2002;170(2-3):73–82. doi: 10.1159/000046182 EDN: YINEEK
- Klein D, Steens J, Wiesemann A, et al. Mesenchymal stem cell therapy protects lungs from radiation-induced endothelial cell loss by restoring Superoxide Dismutase 1 expression. Antioxid Redox Signal. 2017;26(11):563–582. doi: 10.1089/ars.2016.6748
- Klein D, Schmetter A, Imsak R, et al. Therapy with multipotent mesenchymal stromal cells protects lungs from radiation-induced injury and reduces the risk of lung metastasis. Antioxid Redox Signal. 2016;24(2):53–69. doi: 10.1089/ars.2014.6183
- Mustafin RN, Khusnutdinova EK. Postnatal neurogenesis in the human brain. Morphology. 2021;159(2):37–46. doi: 10.17816/1026-3543-2021-159-2-37-46 EDN: UKMMXQ
- Monje ML, Mizumatsu S, Fike JR, Palmer TD. Irradiation induces neural precursor-cell dysfunction. Nat Med. 2002;8(9):955–962. doi: 10.1038/nm749
- Yazlovitskaya EM, Edwards E, Thotala D, et al. Lithium treatment prevents neurocognitive deficit resulting from cranial irradiation. Cancer Res. 2006;66(23):11179–11186. doi: 10.1158/0008-5472.CAN-06-2740
- Chu C, Gao Y, Lan X, et al. Stem-cell therapy as a potential strategy for radiation-induced brain injury. Stem Cell Rev Rep. 2020;16(4):639–649. doi: 10.1007/s12015-020-09984-7 EDN: XVFAEJ
- Acharya MM, Christie LA, Lan ML, Limoli CL. Comparing the functional consequences of human stem cell transplantation in the irradiated rat brain. Cell Transplant. 2013;22(1):55–64. doi: 10.3727/096368912X640565
- Acharya MM, Martirosian V, Christie LA, Limoli CL. Long-term cognitive effects of human stem cell transplantation in the irradiated brain. Int J Radiat Biol. 2014;90(9):816–820. doi: 10.3109/09553002.2014.927934
- Belkind-Gerson J, Hotta R, Whalen M, et al. Engraftment of enteric neural progenitor cells into the injured adult brain. BMC Neurosci. 2016;17:5. doi: 10.1186/s12868-016-0238-y EDN: LIALFW
- Joo KM, Jin J, Kang BG, et al. Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage. PLoS One. 2012;7(2): e25936. doi: 10.1371/journal.pone.0025936 EDN: LGKVKE
- Smith SM, Giedzinski E, Angulo MC, et al. Functional equivalence of stem cell and stem cell-derived extracellular vesicle transplantation to repair the irradiated brain. Stem Cells Transl Med. 2020;9(1):93–105. doi: 10.1002/sctm.18-0227 EDN: AYAARO
- Nanduri LSY, Duddempudi PK, Yang WL, et al. Extracellular vesicles for the treatment of radiation injuries. Front Pharmacol. 2021;12:662437. doi: 10.3389/fphar.2021.662437 EDN: DQQNRO
- Rios C, Jourdain JR, DiCarlo AL. Cellular therapies for treatment of radiation injury after a mass casualty incident. Radiat Res. 2017;188(2):242–245. doi: 10.1667/RR14835.1 EDN: YFLLYY
- Chute JP, Muramoto GG, Salter AB, et al. Transplantation of vascular endothelial cells mediates the hematopoietic recovery and survival of irradiated mice. Blood. 2007;109(6):2365–2372. doi: 10.1182/blood-2006-05-022640
- Ratajczak J, Wysoczynski M, Zuba-Surma E, et al. Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after coculture over OP9 stromal cells. Exp Hematol. 2011;39(2):225–237 doi: 10.1016/j.exphem.2010.10.007 EDN: OMVSTF
- Rodgerson DO, Reidenberg BE, Harris AG, Pecora AL. Potential for a pluripotent adult stem cell treatment for acute radiation sickness. World J Exp Med. 2012;2(3):37–44. doi: 10.5493/wjem.v2.i3.37
- Okita K, Yamanaka S. Induced pluripotent stem cells: opportunities and challenges. Philos Trans R Soc Lond B Biol Sci. 2011;366(1575):2198–2207. doi: 10.1098/rstb.2011.0016
- Zheng H, Chen Y, Luo Q, et al. Generating hematopoietic cells from human pluripotent stem cells: approaches, progress and challenge. Cell Regen. 2023;12(1):31. doi: 10.1186/s13619-023-00175-6 EDN: RZKJBG
- Cichocki F, Goodridge JP, Bjordahl R, et al. Dual antigen-targeted off-the-shelf NK cells show durable response and prevent antigen escape in lymphoma and leukemia. Blood. 2022;140(23):2451–2462. doi: 10.1182/blood.2021015184 EDN: OHIPJU
- Montel-Hagen A, Seet CS, Li S, et al. Organoid-Induced differentiation of conventional T cells from human pluripotent stem cells. Cell Stem Cell. 2019;24(3):376–389e8. doi: 10.1016/j.stem.2018.12.011
- Nakamura S, Takayama N, Hirata S, et al. Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell. 2014;14(4):535–548. doi: 10.1016/j.stem.2014.01.011
- Bandekar M, Maurya DK, Sharma D, Sandur SK. preclinical studies and clinical prospects of Wharton’s jelly-derived MSC for treatment of acute radiation syndrome. Curr Stem Cell Rep. 2021;7(2):85–94. doi: 10.1007/s40778-021-00188-4 EDN: SQEDSN
- Welsh JA, Goberdhan DCI, O’Driscoll L, et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles. 2024;13(2):e12404. doi: 10.1002/jev2.12404 EDN: WQKOII
- Murzina EV, Pak NV, Aksenova NV, et al. Effectiveness of cell therapy of acute radiation syndrome in mice with intravenous and intraperitoneal administration of a cellular product. Bulletin of the Russian Military Medical Academy. 2024;26(2):169–184. doi: 10.17816/brmma609492 EDN: ZROLAN
- Suzuki F, Loucas BD, Ito I, et al. Survival of mice with gastrointestinal acute radiation syndrome through control of bacterial translocation. J Immunol. 2018;201(1):77–86. doi: 10.4049/jimmunol.1701515
- Moskvin AA. Biology of extracellular vesicles, their role in the pathogenesis of thrombosis (review). Bulletin of Luhansk State Pedagogical University. Series 4: Biology. Medicine. Chemistry. 2021;3(67):58–67. EDN: ZKWUZC
- Di Bella MA. Overview and update on extracellular vesicles: considerations on exosomes and their application in modern medicine. Biology (Basel). 2022;11(6):804. doi: 10.3390/biology11060804 EDN: PTVNUQ
- EL Andaloussi S, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347–357. doi: 10.1038/nrd3978 EDN: RHFOLF
- Bazzan E, Tinè M, Casara A, et al. Critical Review of the evolution of extracellular vesicles’ knowledge: From 1946 to today. Int J Mol Sci. 2021;22(12):6417. doi: 10.3390/ijms22126417 EDN: GXCWQL
- Suprunenko EA, Sazonova EA, Vasiliev AV. Extracellular vesicles of pluripotent stem cells. Ontogenez. 2021;52(3):157–169. doi: 10.31857/S0475145021030071 EDN: RXBPAN
- Jeppesen DK, Zhang Q, Franklin JL, Coffey RJ. Extracellular vesicles and nanoparticles: emerging complexities. Trends Cell Biol. 2023;33(8):667–681. doi: 10.1016/j.tcb.2023.01.002 EDN: GXQGJL
- Chernov VM, Muzkantov AA, Baranova NB, Chernova OA. Bacterial extracellular vesicles for new technologies in biomedicine: problems and prospects. Bulletin of Biotechnology and Physico-Chemical Biology named after Yu.A. Ovchinnikov. 2022;18(4):48–61. EDN: KAMNOR
- He Y, Ren Y, Guo B, et al. Development of a specific nanobody and its application in rapid and selective determination of Salmonella enteritidis in milk. Food Chem. 2020;310:125942. doi: 10.1016/j.foodchem.2019.125942 EDN: TVPVJD
- Kudryavtsev IV, Golovkin AS, Totolyan AA. Diagnostic potential of determining individual extracellular vesicles subsets in clinical practice. Complex Issues of Cardiovascular Diseases. 2024;13(3):202–214. doi: 10.17802/2306-1278-2024-13-3-202-214 EDN: JWNRYX
- Jeske R, Bejoy J, Marzano M, Li Y. Human pluripotent stem cell-derived extracellular vesicles: Characteristics and applications. Tissue Eng Part B Rev. 2020;26(2):129–144. doi: 10.1089/ten.TEB.2019.0252 EDN: BDAAZY
- Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3. doi: 10.3402/jev.v3.24641 EDN: YERXCY
- Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013; 200(4): 373–383. doi: 10.1083/jcb.201211138
- Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–579. doi: 10.1038/nri855
- Wiklander OP, Nordin JZ, O’Loughlin A, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles. 2015;4:26316. doi: 10.3402/jev.v4.26316 EDN: TCJZKF
- Misawa T, Tanaka Y, Okada R, Takahashi A. Biology of extracellular vesicles secreted from senescent cells as senescenceassociated secretory phenotype factors. Geriatr Gerontol Int. 2020;20(6):539–546. doi: 10.1111/ggi.13928 EDN: SSLXDD
- Ferguson SW, Wang J, Lee CJ, et al. The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci Rep. 2018;8(1):1419. doi: 10.1038/s41598-018-19581-x
- Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. 2017;35(4):851–858. doi: 10.1002/stem.2575 EDN: YGDAZA
- Zhang G, Zou, X, Huang Y, et al. Mesenchymal stromal cell-derived extracellular vesicles protect against acute kidney injury through anti-oxidation by enhancing Nrf2/ARE activation in rats. Kidney Blood Press Res. 2016;41(2):119–128. doi: 10.1159/ 000443413
- Wang L, Wei J, Da Fonseca Ferreira A, et al. Rejuvenation of senescent endothelial progenitor cells by extracellular vesicles derived from mesenchymal stromal cells. JACC: Basic Transl Sci. 2020;5(11):1127–1141. doi: 10.1016/j.jacbts.2020.08.005 EDN: YWIMGO
- Tan CY, Lai RC, Wong W, et al. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther. 2014;5(3):76. doi: 10.1186/scrt465 EDN: TLHBKA
- Accarie A, l’Homme B, Benadjaoud MA, et al. Extracellular vesicles derived from mesenchymal stromal cells mitigate intestinal toxicity in a mouse model of acute radiation syndrome. Stem Cell Res Ther. 2020;11(1):371. doi: 10.1186/s13287-020-01887-1 EDN: JKYBRC
- Wong KL, Zhang S, Wang M, et al. Intra-articular injections of mesenchymal stem cell exosomes and hyaluronic acid improve structural and mechanical properties of repaired cartilage in a rabbit model. Arthroscopy. 2020;36(8):2215–2228.e2 doi: 10.1016/j.arthro.2020.03.031 EDN: EUDRRA
- Komaki M, Numata Y, Morioka C, et al. Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis. Stem Cell Res Ther. 2017;8(1):219. doi: 10.1186/s13287-017-0660-9 EDN: DZXYNS
- Grange C, Tritta S, Tapparo M, et al. Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy. Sci Rep. 2019;9(1):4468. doi: 10.1038/s41598-019-41100-9 EDN: YVWKBM
- Xu R, Zhang F, Chai R, et al. Exosomes derived from pro-inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization. J Cell Mol Med. 2019;23(11):7617–7631. doi: 10.1111/jcmm.14635 EDN: EXPGRQ
- Schoefinius JS, Brunswig-Spickenheier B, Speiseder T, et al. Mesenchymal stromal cell-derived extracellular vesicles provide long-term survival after total body irradiation without additional hematopoietic stem cell support. Stem Cells. 2017;35(12):2379–2389. doi: 10.1002/stem.2716
- Xia C, Chang P, Zhang Y, et al. Therapeutic effects of bone marrow-derived mesenchymal stem cells on radiation-induced lung injury. Oncol Rep. 2016;35(2):731–738. doi: 10.3892/or.2015.4433
- Xu T, Zhang Y, Chang P, et al. Mesenchymal stem cell-based therapy for radiation-induced lung injury. Stem Cell Res Ther. 2018;9(1):18. doi: 10.1186/s13287-018-0776-6 EDN: YFLPRJ
- Piryani SO, Jiao Y, Kam AYF, et al. Endothelial cell-derived extracellular vesicles mitigate radiation-induced hematopoietic injury. Int J Radiat Oncol Biol Phys. 2019;104(2):291–301. doi: 10.1016/j.ijrobp.2019.02.008
- Saha S, Aranda E, Hayakawa Y, et al. Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nat Commun. 2016;7:13096. doi: 10.1038/ncomms13096
- Pull SL, Doherty JM, Mills JC, et al. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc Natl Acad Sci U S A. 2005;10(1):99–104. doi: 10.1073/pnas.0405979102
- Yan KS, Chia LA, Li X, et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci U S A. 2012;109(2):466–471. doi: 10.1073/pnas.1118857109
- Bouchareychas L, Duong P, Covarrubias S, et al. Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via microRNA cargo. Cell Rep. 2020;32(2):107881. doi: 10.1016/j.celrep.2020.107881 EDN: APFGPY
- Alchinova IB, Polyakova MV, Yakovenko EN et al. Effect of extracellular vesicles formed by multipotent mesenchymal stromal cells on irradiated animals. Bull Exp Biol Med. 2019;166(4):574–579. doi: 10.1007/s10517-019-04394-3 EDN: CQTRPW
- He N, Dong M, Sun Y, et al. Mesenchymal stem cell-derived extracellular vesicles targeting irradiated intestine exert therapeutic effects. Theranostics. 2024;14(14):5492–5511. doi: 10.7150/thno.97623 EDN: ITPWPK
- Ratushniak MG, Shaposhnikova DA, Vysotskaia OV. Regulation of the anti-inflammatory activity of microglia and macrophages and the proliferation activity of neural stem cells under the influence of stem cell exosome signals. In: Receptors and Intracellular Signaling. Serpukhov: Tipografiya Pyatyi Format; 2023. P:283–289. (In Russ.)
- Zuo R, Liu M, Wang Y, et al. BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/β-catenin signaling. Stem Cell Res Ther. 2019;10(1):30 doi: 10.1186/s13287-018-1121-9 EDN: YZPKXS
- Kalmykova NV, Aleksandrova SA. Therapeutic effect of multipotent mesenchymal stromal cells after radiation exposure. Radiation Biology. Radioecology. 2016;56(2):117. (In Russ.) doi: 10.7868/S0869803116020077 EDN: VVHLHR
- Legeza VI, Aksenova NV, Murzina EV, et al. Prospects of cell therapy for hematopoietic syndrome of acute radiation sickness. Russian Military Medical Academy Reports. 2022;41(3):335–344. doi: 10.17816/rmmar89691 EDN: HLPUOP
- Preciado S, Muntión S, Sánchez-Guijo F. Improving hematopoietic engraftment: Potential role of mesenchymal stromal cell-derived extracellular vesicles. Stem Cells. 2021;39(1):26–32. doi: 10.1002/stem.3278 EDN: NBRNKL
Supplementary files
