Постоянные упругости изотропной среды могут иметь произвольные значения

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

На примере матрицы постоянных упругости изотропного материала показано, что модули Юнга, сдвига, объемный, коэффициент Пуассона могут принимать любые действительные значения. При этом положительная определенность матрицы постоянных упругости не является обязательной, как традиционно принято считать. Положительность удельной энергии деформации имеет место и тогда, когда матрица постоянных упругости не является положительно определенной. Достаточно для обратимости соотношений закона Гука требовать невырожденности матрицы постоянных упругости. Приведены графики модулей Юнга, объемного и коэффициента Пуассона в зависимости от отношения постоянных Ламе.

Об авторах

Н. И. Остросаблин

Институт гидродинамики им. М.А. Лаврентьева СО РАН

Автор, ответственный за переписку.
Email: o.n.ii@yandex.ru
Новосибирск, Россия

Список литературы

  1. Boulanger P., Hayes M. On Young’s modulus for anisotropic media // Trans. ASME. J. Appl. Mech. 1995. V. 62. № 3. P. 819–820. https://doi.org/10.1115/1.2897022
  2. Boulanger P., Hayes M. Poisson’ ratio for orthorhombic materials // J. Elast. 1998. V. 50. P. 87–89. https://doi.org/10.1023/A:1007468812050
  3. Cazzani A., Rovati M. Extrema of Young’s modulus for cubic and transversely isotropic solids // Intern. J. Solids Struct. 2003. V. 40. № 7. P. 1713–1744. https://doi.org/10.1016/S0020-7683(02)00668-6
  4. Ting T.C.T. The stationary values of Young’s modulus for monoclinic and triclinic materials // J. Mech. 2005. V. 21. № 4. P. 249–253. https://doi.org/10.1017/S1727719100000691
  5. Ting T.C.T. Explicit expression of the stationary values of Young’s modulus and the shear modulus for anisotropic elastic materials // J. Mech. 2005. V. 21. № 4. P. 255–266. https://doi.org/10.1017/S1727719100000708
  6. Norris A.N. Extreme values of Poisson’s ratio and other engineering moduli in anisotropic materials // J. Mech. Mater. Struct. 2006. V. 1. № 4. P. 793–812. https://doi.org/10.2140/jomms.2006.1.793
  7. Norris A.N. Poisson’s ratio in cubic materials // Proc. Roy. Soc. London. Ser. A. 2006. V. 462. № 2075. P. 3385–3405. https://doi.org/10.1098/rspa.2006.1726
  8. Hayes M., Shuvalov A. On the extreme values of Young’s modulus, the shear modulus, and Poisson’s ratio for cubic materials // Trans. ASME. J. Appl. Mech. 1998. V. 65. № 3. P. 786–787. https://doi.org/10.1115/1.2789130
  9. Ting T.C.T. Very large Poisson’s ratio with a bounded transverse strain in anisotropic elastic materials // J. Elast. 2004. V. 77. № 2. P. 163–176. https://doi.org/10.1007/s10659-005-2156-6
  10. Ting T.C.T., Chen T. Poisson’s ratio for anisotropic elastic materials can have no bounds // Quart. J. Mech. Appl. Math. 2005. V. 58. № 1. P. 73–82. https://doi.org/10.1093/qjmamj/hbh021
  11. Tarumi R., Ledbetter H., Shibutani Y. Some remarks on the range of Poisson’s ratio in isotropic linear elasticity // Philosophical Magazine. 2012. V. 92. № 10. P. 1287–1299. https://doi.org/10.1080/14786435.2011.644816
  12. Лисовенко Д.С. Аномальные величины коэффициента Пуассона анизотропных кристаллов // Деформация и разрушение материалов. 2011. № 7. С. 1–10.
  13. Епишин А.И., Лисовенко Д.С. Экстремальные значения коэффициентов Пуассона кубических кристаллов // Журн. техн. физики. 2016. Т. 86. № 10. С. 74–82.
  14. Остросаблин Н.И. Условия экстремальности постоянных упругости и главные оси анизотропии // Прикл. механика и техн. физика. 2016. Т. 57. № 4. С. 192–210. https://doi.org/10.15372/PMTF20160419
  15. Остросаблин Н.И. О наитеснейших границах констант упругости и приведении удельной энергии деформации к каноническому виду // Изв. АН СССР. Механика тверд. тела. 1989. № 2. С. 90–94.
  16. Остросаблин Н.И. Наитеснейшие границы изменения практических констант упругости анизотропных материалов // Прикл. механика и техн. физика. 1992. № 1. С. 107–114.
  17. Аннин Б.Д., Остросаблин Н.И. Анизотропия упругих свойств материалов // Прикл. механика и техн. физика. 2008. Т. 49. № 6. С. 131–151.
  18. Трусделл К. Первоначальный курс рациональной механики сплошных сред. М.: Мир, 1975. 592 с.
  19. Остросаблин Н.И. Классы симметрии тензоров анизотропии квазиупругих материалов и обобщение подхода Кельвина // Прикл. механика и техн. физика. 2017. Т. 58. № 3. С. 108–129. https://doi.org/10.15372/PMTF20170312
  20. Остросаблин Н.И. Собственные модули упругости и состояния для материалов кристаллографических сингоний // Динамика сплошной среды: Сб. науч. тр. / АН СССР. Сиб. отд-ние. Ин-т гидродинамики. 1986. Вып. 75. С. 113–125.
  21. Лурье А.И. Теория упругости. М.: Наука, 1970. 940 с.
  22. Чернышев Г.Н. Взаимное обобщение уравнений упругого и гравитационного полей на основе механики деформируемых тел // Изв. АН. Механика тверд. тела. 2002. № 2. С. 86–100.
  23. Чернышев Г.Н. Упругость, гравитация, электродинамика. М.: Наука, 2003. 144 с.
  24. Букреева К.А., Бабичева Р.И., Дмитриев С.В., Zhou K., Мулюков Р.Р. Отрицательная жесткость нанопленки интерметаллида FeAl // Физика тверд. тела. 2013. Т. 55. № 9. С. 1847–1851.
  25. Lakes R., Wojciechowski K.W. Negative compressibility, negative Poisson’s ratio , and stability // Physica Status Solidi. B. 2008. V. 245. № 3. P. 545–551. https://doi.org/10.1002/pssb.200777708
  26. Wu Y., Lai Y., Zhang Z.-Q. Elastic metamaterials with simultaneously negative effective shear modulus and mass density // Phys. Rev. Lett. 2011. V. 107. № 10. P. 105506-1–105506-5. https://doi.org/10.1103/PhysRevLett.107.105506
  27. Zadpoor A.A. Mechanical meta-materials // Mater. Horiz. 2016. V. 3. № 3. P. 371–381. https://doi.org/10.1039/C6MH00065G
  28. Yu X., Zhou J., Liang H. et al. Mechanical metamaterials associated with stiffness, rigidity and compressibility. A brief review // Progress in Materials Science. 2018. V. 94. P. 114–173. https://doi.org/10.1016/j.pmatsci.2017.12.003
  29. Остросаблин Н.И. Единственность решения граничных задач статических уравнений теории упругости с несимметричной матрицей модулей упругости // Сиб. журн. индустр. математики. 2022. Т. 25. № 4. С. 107–115. https://doi.org/10.33048/SIBJIM.2022.25.409
  30. Cairns A.B., Catafesta J., Levelut C. et al. Giant negative linear compressibility in zinc dicyanoaurate // Nat. Mater. 2013. V. 12. P. 212–216. https://doi.org/10.1038/nmat3551
  31. Остросаблин Н.И. О функциональной связи двух симметричных тензоров второго ранга // Прикл. механика и техн. физика. 2007. Т. 48. № 5. С. 134–137.
  32. Остросаблин Н.И. Функции кинетических напряжений в механике сплошных сред // Динамика сплошной среды: Сб. науч. тр. / РАН. Сиб. отд-ние. Ин-т гидродинамики. 2007. Вып. 125. С. 76–116.
  33. Pipkin A.C. Constraints in linearly elastic materials // J. Elast. 1976. V. 6. № 2. P. 179–193. https://doi.org/10.1007/BF00041785
  34. Гольдштейн Р.В., Городцов В.А., Лисовенко Д.С. Модуль сдвига кубических кристаллов // Письма о материалах. 2012. Т. 2. С. 21–24.
  35. Goldstein R.V., Gorodtsov V.A., Komarova M.A., Lisovenko D.S. Extreme values of the shear modulus for hexagonal crystals // Scripta Materialia. 2017. V. 140. P. 55–58. https://doi.org/10.1016/j.scriptamat.2017.07.002
  36. Gorodtsov V.A., Lisovenko D.S. Extreme values of Young’s modulus and Poisson’s ratio of hexagonal crystals // Mechanics of Materials. 2019. V. 134. P. 1–8. https://doi.org/10.1016/j.mechmat.2019.03.017
  37. Городцов В.А., Лисовенко Д.С. Ауксетики среди материалов с кубической анизотропией // Изв. РАН. МТТ. 2020. № 4. С. 7–24. https://doi.org/10.31857/S0572329920040054
  38. Gorodtsov V.A., Tkachenko V.G., Lisovenko D.S. Extreme values of Young’s modulus of tetragonal crystals // Mechanics of Materials. 2021. V. 154. P. 103724. https://doi.org/10.1016/j.mechmat.2020.103724
  39. Gorodtsov V.A., Lisovenko D.S. The extreme values of Young’s modulus and the negative Poisson’s ratios of rhombic crystals // Crystals. 2021. V. 11. № 8. P. 863. https://doi.org/10.3390/cryst11080863
  40. Volkov M.A. Stationary Points of Poisson’s Ratio of Six-Constant Tetragonal Crystals AT Particular Orientations // Mech. Solids. 2024. V. 59. P. 3254–3265. https://doi.org/10.1134/S0025654424606244

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».