ON THE APPLIED THEORY OF RECTANGLE STRETCHING

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper considers deformation of isotropic rectangular samples within the generalized plane stress state. Approximate models of different orders for elongated samples are constructed by representing the displacement field as an expansion in first- and second-order polynomials with unknown coefficient functions. The Kantorovich method within the Lagrange variational principle allows one to reduce the problem to a system of ordinary differential equations with constant coefficients and to form the corresponding boundary conditions. The models are verified by the finite element method (FEM) implemented in FlexPDE, the suitability of the obtained models is investigated depending on the relative thickness parameter of the rectangle. The inverse problem of reconstructing the Poisson ratio and Young’s modulus from information on the displacement field on the lateral face is solved.

Авторлар туралы

A. Vatulyan

Southern Federal University; Southern Mathematical Institute – a branch of the VNC RAS

Хат алмасуға жауапты Автор.
Email: aovatulyan@sfedu.ru
Rostov-on-Don, Russia; Vladikavkaz, Russia

V. Yurov

Southern Federal University; Southern Mathematical Institute – a branch of the VNC RAS

Email: vijia.jurov@yandex.ru
Rostov-on-Don, Russia; Vladikavkaz, Russia

I. Gusakov

Southern Federal University

Email: igusakov@sfedu.ru
Rostov-on-Don, Russia

Әдебиет тізімі

  1. Канторович Л.В., Крылов В.И. Приближенные методы высшего анализа. Л.: Гос. изд-во физ.-мат. лит., 1962. 560 с.
  2. Михлин С.Г. Вариационные методы в математической физике. М.: Физматгиз, 1962. 528 с.
  3. Filon L.N.G. On an Approximate Solution for the Bending of a Beam of Rectangular CrossSection under any System of Load, with Special Reference to Points of Concentrated or Discontinuous Loading // Phyl. Trans. Roy. Soc. 1903. V. 201. P. 63–155.
  4. Filon L.N.G. On the expansion of polynomials in series of functions // Proc. London Math. Soc. 1907. V. 4. P. 396–430.
  5. Папкович И.Ф. Об одной форме решения плоской задачи теории упругости для прямоугольной полосы // Докл. АН СССР. 1940. Т. 27. № 4. С. 335–339.
  6. Fadle J. Die Selbstspannungs-Eigenwertfunktionen der quadratischen Scheibe // Ing.Arch. 1940. V.11. P. 125–149. https://doi.org/10.1007/BF02084699
  7. Лурье А.И. Теория упругости. М.: Наука, 1980. 512 с.
  8. Ворович И.И., Александров В.М., Бабешко В.А. Неклассические смешанные задачи теории упругости. М.: Наука, 1974. 456 с.
  9. Устинов Ю.А. Математическая теория поперечно-неоднородных плит. Ростовна-Дону: Изд-во ООО ЦВВР, 2006. 257 с.
  10. Джанелидзе Г.Ю., Прокопов В.К. Метод однородных решений в математической теории упругости // Тр. IV Всес. матем. съезда, секционные обзорные доклады. Т. I. Л.: Изд. АН СССР, 1963.
  11. Dalei M., Kerr A.D. Analysis of clamped rectangular orthotropic plates subjected to a uniform lateral load // Int. J. Mech. Sci. 1995. V. 37. № 5. P. 527–535. https://doi.org/10.1016/0020-7403(94)00073-S
  12. Yuan S., Jin Y., Williams F.W. Bending analysis of Mindlin plates by extended Kantorovich method // J. Eng. Mech. (ASCE). 1998. V. 124. № 12. P. 1339–1345. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:12(1339
  13. Aghdam M.M., Falahatgar S.R. Bending analysis of thick laminated plates using extended Kantorovich method // Composite Structures. 2003. V. 62. № 3–4. Р. 279–283. https://doi.org/10.1016/j.compstruct.2003.09.026
  14. Aghdam M.M., Mohammadi M., Erfanian V. Bending analysis of thin annular sector plates using extended Kantorovich method // Thin-Walled Structures. 2007. V. 45. № 12. Р. 983–990. https://doi.org/10.1016/j.tws.2007.07.012
  15. Ike C.C. Variational Ritz‐Kantorovich‐Euler Lagrange method for the elastic buckling analysis of fully clamped Kirchhoff thin plate // ARPN Journal of Engineering and Applied Sciences. 2021. V. 16. № 2. P. 224–230.
  16. Hassan A.H., Kurgan N. Buckling of thin skew isotropic plate resting on Pasternak elastic foundation using extended Kantorovich method // Heliyon. 2020. V. 6. № 6. https://doi.org/10.1016/j.heliyon.2020.e04236

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).