Особенности динамики вращающегося вала с нелинейными моделями внутреннего демпфирования и упругости

Обложка

Цитировать

Полный текст

Аннотация

В работе анализируется влияние нелинейного (кубического) внутреннего демпфирования (в модели Кельвина–Фойхта) и кубической нелинейности упругих сил на особенности динамики вращающегося гибкого вала с распределенной массой. Вал моделируется стержнем Бернулли–Эйлера с использованием функции Грина, выполнена дискретизация и сведение задачи динамики вращающегося вала к интегральному уравнению. Выявлено, что в такой системе всегда существует ветвь ограниченных периодических движений (автоколебаний) при закритической скорости вращения. Кроме того, при малом внутреннем демпфировании периодическая ветвь продолжается в докритическую область: при достижении критической скорости реализуется субкритическая бифуркация Пуанкаре–Андронова–Хопфа и существует неустойчивая ветвь периодических движений ниже ветви устойчивых периодических автоколебаний (возникновение гистерезиса при изменении скорости вращения). При увеличении коэффициента внутреннего трения явление гистерезиса исчезает, и при критической скорости вращения возникает мягкое возбуждение автоколебаний вращающегося вала через сверхкритическую бифуркацию Пуанкаре–Андронова–Хопфа.

Полный текст

1. Введение. Эффекты влияния внутреннего демпфирования на динамику вращающихся валов хорошо известны в технике. Оно играет две противоположные роли – демпфирования и дестабилизации, из которых при достаточно малых скоростях вращения доминирует первая, а при больших – вторая [1]. Даже в идеально сбалансированном вале при определенных (закритических) скоростях вращения под действием циркуляционных сил, вызванных силами внутреннего демпфирования, возникает самовозбуждение поперечных колебаний – динамическая потеря устойчивости (бифуркация Пуанкаре–Андронова–Хопфа) ­[1–4]. В этой работе под критической скоростью понимается скорость вращения вала, при которой происходит бифуркация, в отличие от случая, когда скорость вращения вала совпадает с собственной частотой его изгибных колебаний.

Влияние внутреннего демпфирования, по всей вероятности, впервые было достаточно полно описано в работе Кимпбалла [5] и продемонстрировано в экспериментах Ньюкирка [6]. В последующем вопросы устойчивости вращаю­щихся роторов при наличии линейного внутреннего демпфирования были рассмотрены в работе [7]. Причем основным эффектом, связанным с наличием внутреннего демпфирования, является самовозбуждение изгибных колебаний. В последние годы усовершенствуется подход к моделированию эффектов внутреннего демпфирования ­[8–11]. Тем не менее особенности поведения в закритической области после бифуркации ранее подробно не рассматривались. Ограничение поперечных колебаний вала возможно как за счет внешних устройств [12], так и при учете нелинейностей в законе упругого деформирования вала.

Целью настоящей работы является анализ динамики вращающегося деформируемого вала в закритической области с учетом нелинейных членов в законе внутреннего демпфирования и законе упругости.

2. Расчетная схема. Рассматривается гибкий вал круглого постоянного поперечного сечения, вращающийся вокруг своей продольной оси с постоянной угловой скоростью ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHjpWDaaa@32D7@ . Оба конца вала установлены в жестких (недеформируемых) опорах, обеспечивающих свободное вращение вала, но исключающих смещение и поворот его концевых сечений относительно поперечных осей. Вал имеет погонную массу m R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGTbWaaSbaaSqaaiaadkfaaeqaaaaa@32FF@ , которая равномерно распределена по его длине l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGSbaaaa@31FB@ . Гироскопическими эффектами пренебрегаем. Вал моделируется стержнем Бернулли–Эйлера с включением дополнительных членов, учитывающих нелинейно-вязкое трение в модели Кельвина–Фойхта и кубической нелинейностью в законе упругости.

Учитываются силы внешнего трения вала, пропорциональные его абсолютной поперечной скорости колебаний. Поперечные колебания вала будем рассматривать относительно неподвижной системы координат Oxyz MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpbGaamiEaiaadMhacaWG6baaaa@34D8@  с началом на левой опоре (рис. 1). Орты i , j , k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqaceWFPbGbaS aacaGGSaGaaGPaVlqa=PgagaWcaiaacYcacaaMc8Uab83Aayaalaaa aa@3E03@  связаны с осями Oxyz MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpbGaamiEaiaadMhacaWG6baaaa@34D8@ .

 

Рис. 1. Расчетная схема вращающегося вала: 1 – траектория прецессии, 2 – направление вращения.

 

Рис. 2. Диаграмма Аргана в диапазоне скоростей вращения Ω30;32.

 

3. Учет внутреннего демпфирования при распределенной массе вращающегося вала. В линейной теории для описания внутреннего демпфирования в случае одноосного напряженного состояния обычно используется модели Кельвина–Фойхта для упруго-вязких тел [13]:

σ=E ε+ T V ε ˙ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHdpWCcqGH9aqpcaWGfbWaaeWaaeaacqaH1o qzcqGHRaWkcaWGubWaaSbaaSqaaiaadAfaaeqaaOGaaGPaVlqbew7a LzaacaaacaGLOaGaayzkaaaaaa@3DD4@ ,

где E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGfbaaaa@31D4@ – модуль упругости материала, ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH1oqzaaa@32B1@ – деформация, T V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGubWaaSbaaSqaaiaadAfaaeqaaaaa@32EA@ – характерное время (произведение E T V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGfbGaaGPaVlaadsfadaWgaaWcbaGaamOvaa qabaaaaa@353F@  представляет собой коэффициент вязкости).

Для учета внутреннего демпфирования в материале вала с равномерно распределенной массой необходимо во вращающейся системе координат определить осевую деформацию в выбранной точке материальной среды. Обозначим кривизну вала κ z,t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaGGabiqb=P7aRz aalaWaaeWaaeaacaWG6bGaaiilaiaadshaaiaawIcacaGLPaaaaaa@3E80@ . В неподвижной системе координат Oxyz MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpbGaamiEaiaadMhacaWG6baaaa@34D8@ , z 0,l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG6bGaeyicI48aamWaaeaacaaIWaGaaiilai aaykW7caWGSbaacaGLBbGaayzxaaaaaa@3965@ , кривизна имеет вид κ z,t = κ s z;t i s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaGGabiqb=P7aRz aalaWaaeWaaeaacaWG6bGaaiilaiaadshaaiaawIcacaGLPaaacaaM c8Uaeyypa0JaaGPaVlabeQ7aRnaaBaaaleaacaWGZbaabeaakmaabm aabaGaamOEaiaacUdacaaMc8UaamiDaaGaayjkaiaawMcaaiaaykW7 ieqaceGFPbGbaSaadaWgaaWcbaGaam4Caaqabaaaaa@4EFB@ , s=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGZbGaeyypa0JaaGymaiaacYcacaaMc8UaaG Omaaaa@36BA@  и во вращающейся вместе с валом системе координат O x ˜ y ˜ z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpbGabmiEayaaiaGabmyEayaaiaGaamOEaa aa@34F6@ , z 0,l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG6bGaeyicI48aamWaaeaacaaIWaGaaiilai aaykW7caWGSbaacaGLBbGaayzxaaaaaa@3965@ , кривизна κ z,t = κ ˜ s z;t i ˜ s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiqacuWF6oWAgaWcamaabmaabaGaamOEaiaacY cacaWG0baacaGLOaGaayzkaaGaaGPaVlabg2da9iaaykW7cuaH6oWA gaacamaaBaaaleaacaWGZbaabeaakmaabmaabaGaamOEaiaacUdaca aMc8UaamiDaaGaayjkaiaawMcaaiaaykW7ruavP1wzZbItLDhis9wB H5gaiqqaceGFPbGbaGGbaSaadaWgaaWcbaGaam4Caaqabaaaaa@4D1F@ , s=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGZbGaeyypa0JaaGymaiaacYcacaaMc8UaaG Omaaaa@36BA@ . Базисы i s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqaceWFPbGbaS aadaWgaaWcbaGaam4Caaqabaaaaa@38B6@  и i ˜ s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqaceWFPbGbaG GbaSaadaWgaaWcbaGaam4Caaqabaaaaa@38C4@ , s=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGZbGaeyypa0JaaGymaiaacYcacaaMc8UaaG Omaaaa@36BA@ – ортонормированы, т.е. i s i t = i ˜ s i ˜ t = δ st MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqaceWFPbGbaS aadaWgaaWcbaGaam4CaaqabaGccaaMc8UaeyyXICTaaGPaVlqa=Lga gaWcamaaBaaaleaacaWG0baabeaakiaaykW7cqGH9aqpceWFPbGbaS GbaGaadaWgaaWcbaGaam4CaaqabaGccaaMc8UaeyyXICTaaGPaVlqa =LgagaWcgaacamaaBaaaleaacaWG0baabeaakiabg2da9iaaykW7cq aH0oazdaWgaaWcbaGaam4CaiaaykW7caWG0baabeaaaaa@548B@ . В силу инвариантности вектора кривизны верно равенство1:

  κ z;t = κ s z;t i s = κ ˜ s z;t i ˜ s t ;s=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiqacuWF6oWAgaWcamaabmaabaGaamOEaiaacU dacaaMc8UaamiDaaGaayjkaiaawMcaaiabg2da9iabeQ7aRnaaBaaa leaacaWGZbaabeaakmaabmaabaGaamOEaiaacUdacaaMc8UaamiDaa GaayjkaiaawMcaaiaaykW7ieqaceGFPbGbaSaadaWgaaWcbaGaam4C aaqabaGccqGH9aqpcuaH6oWAgaacamaaBaaaleaacaWGZbaabeaakm aabmaabaGaamOEaiaacUdacaaMc8UaamiDaaGaayjkaiaawMcaaiaa ykW7ceGFPbGbaSGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqaai aadshaaiaawIcacaGLPaaacaGG7aGaaGPaVlaaykW7caWGZbGaeyyp a0JaaGymaiaacYcacaaMc8UaaGPaVlaaikdaaaa@6122@               (3.1)

Заметим, что наряду с инвариантной записью необходимо различать мат­ричные отображения κ O x ˜ y ˜ z = κ ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabcaqaaGGabiqb=P7aRzaalaaacaGLiWoada WgaaWcbaGaam4taiqadIhagaacaiqadMhagaacaiaadQhaaeqaaOGa eyypa0Jaf8NUdSMbaGaaaaa@3B4E@  и κ Oxyz =κ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabcaqaaGGabiqb=P7aRzaalaaacaGLiWoada WgaaWcbaGaam4taiaadIhacaWG5bGaamOEaaqabaGccaaMc8Uaeyyp a0JaaGPaVlab=P7aRbaa@3E37@ , которые привязаны к различным базисам. Связь между координатами в различных базисах определяется ортогональной матрицей поворота S φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWFtbWaae WaaeaacqaHgpGAaiaawIcacaGLPaaaaaa@3AB1@ , где φ=ωt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHgpGAcqGH9aqpcqaHjpWDcaWG0baaaa@3693@ – угол поворота:

κ=S φ κ ˜ :S φ = cos φ sin φ sin φ cos φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiqacqWF6oWAcaaMc8EeduuDJXwAKbYu51MyVX gaiqqacqGF9aqpcaaMc8EefqvATv2CG4uz3bIuV1wyUbacfeGaa03u amaabmaabaGaeqOXdOgacaGLOaGaayzkaaGaaGPaVlqb=P7aRzaaia GaaGPaVlaacQdacaaMc8UaaGPaVlaa9nfadaqadaqaaiabeA8aQbGa ayjkaiaawMcaaiaaykW7cqGH9aqpcaaMc8+aamWaaeaafaqabeGaca aabaGaci4yaiaac+gacaGGZbWaaeWaaeaacqaHgpGAaiaawIcacaGL PaaaaeaaciGGZbGaaiyAaiaac6gadaqadaqaaiabeA8aQbGaayjkai aawMcaaaqaaiabgkHiTiaaykW7ciGGZbGaaiyAaiaac6gadaqadaqa aiabeA8aQbGaayjkaiaawMcaaaqaaiGacogacaGGVbGaai4Camaabm aabaGaeqOXdOgacaGLOaGaayzkaaaaaaGaay5waiaaw2faaaaa@734A@ .

Опираясь на гипотезу Бернулли–Эйлера, осевая деформация в выбранной точке материальной среды может быть представлена во вращающейся вместе с валом системе координат как

ε z x ˜ , y ˜ ,z;t i 3 = p × κ = x ˜ κ ˜ 2 z;t + y ˜ κ ˜ 1 z;t i 3 ; p = x ˜ i ˜ 1 + y ˜ i ˜ 2 , κ = κ ˜ 1 z;t i ˜ 1 + κ ˜ 2 z;t i ˜ 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiabew7aLnaaBaaaleaacaWG6baabeaakm aabmaabaGabmiEayaaiaGaaiilaiaaykW7ceWG5bGbaGaacaGGSaGa aGPaVlaadQhacaGG7aGaaGPaVlaadshaaiaawIcacaGLPaaacaaMc8 EefqvATv2CG4uz3bIuV1wyUbaceeGab8xAayaalaWaaSbaaSqaaiaa iodaaeqaaOGaaGPaVlabg2da9iaaykW7cqGHsislcaaMc8Uab8hCay aalaGaaGPaVlabgEna0kaaykW7iiqacuGF6oWAgaWcaiaaykW7cqGH 9aqpcaaMc8+aaeWaaeaacqGHsislcaaMc8UabmiEayaaiaGaaGPaVl qbeQ7aRzaaiaWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWG6bGa ai4oaiaaykW7caWG0baacaGLOaGaayzkaaGaaGPaVlabgUcaRiaayk W7ceWG5bGbaGaacaaMc8UafqOUdSMbaGaadaWgaaWcbaGaaGymaaqa baGcdaqadaqaaiaadQhacaGG7aGaaGPaVlaadshaaiaawIcacaGLPa aaaiaawIcacaGLPaaacaaMc8Uab8xAayaalaWaaSbaaSqaaiaaioda aeqaaOGaaGPaVlaacUdaaeaaceWFWbGbaSaacaaMc8Uaeyypa0JaaG PaVlqadIhagaacaiaaykW7ceWFPbGbaSGbaGaadaWgaaWcbaGaaGym aaqabaGccaaMc8Uaey4kaSIaaGPaVlqadMhagaacaiaaykW7ceWFPb GbaSGbaGaadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaaGPaVlaaykW7 cuGF6oWAgaWcaiaaykW7cqGH9aqpcaaMc8UafqOUdSMbaGaadaWgaa WcbaGaaGymaaqabaGcdaqadaqaaiaadQhacaGG7aGaaGPaVlaadsha aiaawIcacaGLPaaacaaMc8Uab8xAayaalyaaiaWaaSbaaSqaaiaaig daaeqaaOGaaGPaVlabgUcaRiaaykW7cuaH6oWAgaacamaaBaaaleaa caaIYaaabeaakmaabmaabaGaamOEaiaacUdacaaMc8UaamiDaaGaay jkaiaawMcaaiaaykW7ceWFPbGbaSGbaGaadaWgaaWcbaGaaGOmaaqa baGccaGGUaGaaGPaVdaaaa@B9F7@

Или в матричной форме во вращающейся системе координат:

ε z x ˜ , y ˜ ,z;t = x ˜ κ ˜ 2 z;t + y ˜ κ ˜ 1 z;t = p ˜ T R κ ˜ ; p ˜ = x ˜ y ˜ ,R= 0 1 1 0 , κ ˜ = κ ˜ 1 κ ˜ 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiabew7aLnaaBaaaleaacaWG6baabeaakm aabmaabaGabmiEayaaiaGaaiilaiaaykW7ceWG5bGbaGaacaGGSaGa aGPaVlaadQhacaGG7aGaaGPaVlaadshaaiaawIcacaGLPaaacaaMc8 Uaeyypa0JaaGPaVlabgkHiTiaaykW7ceWG4bGbaGaacaaMc8UafqOU dSMbaGaadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaadQhacaGG7a GaaGPaVlaadshaaiaawIcacaGLPaaacaaMc8Uaey4kaSIaaGPaVlqa dMhagaacaiaaykW7cuaH6oWAgaacamaaBaaaleaacaaIXaaabeaakm aabmaabaGaamOEaiaacUdacaaMc8UaamiDaaGaayjkaiaawMcaaiaa ykW7cqGH9aqpcaaMc8EefqvATv2CG4uz3bIuV1wyUbaceeGab8hCay aaiaWaaWbaaSqabeaacaWGubaaaOGaaGPaVlaa=jfacaaMc8occeGa f4NUdSMbaGaacaaMc8Uaae4oaaqaaiqa=bhagaacaiaaykW7cqGH9a qpcaaMc8+aaiWaaeaafaqabeGabaaabaGabmiEayaaiaaabaGabmyE ayaaiaaaaaGaay5Eaiaaw2haaiaacYcacaaMc8UaaGPaVlaaykW7ca aMc8Uaa8NuaiaaykW7cqGH9aqpcaaMc8+aamWaaeaafaqabeGacaaa baGaaGimaaqaaiabgkHiTiaaykW7caaIXaaabaGaaGymaaqaaiaaic daaaaacaGLBbGaayzxaaGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7 cuGF6oWAgaacaeXafv3ySLgzGmvETj2BSbacfeGae0xpa0JaaGPaVp aacmaabaqbaeqabiqaaaqaaiqbeQ7aRzaaiaWaaSbaaSqaaiaaigda aeqaaaGcbaGafqOUdSMbaGaadaWgaaWcbaGaaGOmaaqabaaaaaGcca GL7bGaayzFaaGaaGPaVlaac6caaaaa@AB5C@

Если для материала рассматривать линейный закон Гука и использовать модель стержня Бернулли–Эйлера, то изгибающий момент для сечения с двумя осями симметрии I x ˜ = I y ˜ = I R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGjbWaaSbaaSqaaiqadIhagaacaaqabaGcca aMc8Uaeyypa0JaaGPaVlaadMeadaWgaaWcbaGabmyEayaaiaaabeaa kiaaykW7cqGH9aqpcaaMc8UaamysamaaBaaaleaacaWGsbaabeaaaa a@3F34@  описывается следующим выражением [14]:

M = M ˜ =E I R κ ˜ =E I R κ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqaceWFnbGbaS aacaaMc8Uaeyypa0Jab8xtayaalyaaiaGaeyypa0JaaGPaVlaadwea caWGjbWaaSbaaSqaaiaadkfaaeqaaOGaaGPaVJGabiqb+P7aRzaaly aaiaGaeyypa0JaamyraiaadMeadaWgaaWcbaGaamOuaaqabaGccaaM c8Uaf4NUdSMbaSaaaaa@4A81@ .

Отметим, что координаты точки среды x ˜ , y ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaiqadIhagaacaiaacYcacaaMc8Uabm yEayaaiaaacaGLOaGaayzkaaaaaa@36E7@  во вращающейся вместе с валом системе отсчета при вращении не меняются, исходя из этого, скорость деформации ε ˙ z x ˜ , y ˜ ,z;t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuaH1oqzgaGaamaaBaaaleaacaWG6baabeaakm aabmaabaGabmiEayaaiaGaaiilaiaaykW7ceWG5bGbaGaacaGGSaGa aGPaVlaadQhacaGG7aGaaGPaVlaadshaaiaawIcacaGLPaaaaaa@4049@  для фиксированной точки среды x ˜ , y ˜ =const MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaiqadIhagaacaiaacYcacaaMc8Uabm yEayaaiaaacaGLOaGaayzkaaGaeyypa0Jaae4yaiaab+gacaqGUbGa ae4Caiaabshaaaa@3CA3@  в мат­ричной форме имеет вид:

  ε ˙ z x ˜ , y ˜ ,z;t = x ˜ κ ˜ ˙ 2 z;t + y ˜ κ ˜ ˙ 1 z;t = p ˜ T R κ ˜ ˙ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuaH1oqzgaGaamaaBaaaleaacaWG6baabeaakm aabmaabaGabmiEayaaiaGaaiilaiaaykW7ceWG5bGbaGaacaGGSaGa aGPaVlaadQhacaGG7aGaaGPaVlaadshaaiaawIcacaGLPaaacaaMc8 Uaeyypa0JaaGPaVlabgkHiTiaaykW7ceWG4bGbaGaacaaMc8UafqOU dSMbaGGbaiaadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaadQhaca GG7aGaaGPaVlaadshaaiaawIcacaGLPaaacaaMc8Uaey4kaSIaaGPa VlqadMhagaacaiaaykW7cuaH6oWAgaacgaGaamaaBaaaleaacaaIXa aabeaakmaabmaabaGaamOEaiaacUdacaaMc8UaamiDaaGaayjkaiaa wMcaaiaaykW7cqGH9aqpcaaMc8EefqvATv2CG4uz3bIuV1wyUbacee Gab8hCayaaiaWaaWbaaSqabeaacaWGubaaaOGaaGPaVlaa=jfacaaM c8occeGaf4NUdSMbaGGbaiaaaaa@727E@ .             (3.2)

Вектор угловой скорости поворота ω =ω i 3 = φ ˙ i 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiqacuWFjpWDgaWcaiaaykW7rmqr1ngBPrgitL xBI9gBaGabbiab+1da9iaaykW7cqaHjpWDcaaMc8EefqvATv2CG4uz 3bIuV1wyUbacfeGab0xAayaalaWaaSbaaSqaaiaaykW7caaIZaaabe aakiaaykW7cqGH9aqpcaaMc8UafqOXdOMbaiaacaaMc8Uab0xAayaa laWaaSbaaSqaaiaaykW7caaIZaaabeaaaaa@5348@  сечения вала определяется скоростью поворота подвижного базиса относительно неподвижного базиса, тогда как i ˜ ˙ 1 = ω × i ˜ 1 , i ˜ ˙ 2 = ω × i ˜ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqaceWFPbGbaG GbaSGbaiaadaWgaaWcbaGaaGymaaqabaGccaaMc8Uaeyypa0JaaGPa VJGabiqb+L8a3zaalaGaaGPaVlabgEna0kaaykW7ceWFPbGbaGGbaS aadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaGPaVlaaykW7ceWFPbGb aGGbaSGbaiaadaWgaaWcbaGaaGOmaaqabaGccaaMc8Uaeyypa0JaaG PaVlqb+L8a3zaalaGaaGPaVlabgEna0kaaykW7ceWFPbGbaGGbaSaa daWgaaWcbaGaaGOmaaqabaaaaa@589F@ .

При движении и меняющемся во времени векторе кривизны необходимо учитывать материальную производную, следящую за выбранной точкой деформируемой среды, а именно:

  κ ˙ = t κ s i s = t κ ˜ s i ˜ s , i ˜ ˙ s = ω × i ˜ s ; t κ s i s = κ ˙ s i s , t κ ˜ s i ˜ s = κ ˜ ˙ s i ˜ s + κ ˜ s i ˜ ˙ s ; κ ˙ = κ ˜ ˙ s i ˜ s + ω × κ ˜ s i ˜ s = κ ˜ ˙ s i ˜ s + ω × κ ; κ ˜ ˙ s i ˜ s = κ ˙ ω × κ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaaceqaaGGabiqb=P7aRzaalyaacaGaaGPaVhXafv 3ySLgzGmvETj2BSbaceeGae4xpa0JaaGPaVpaalaaabaGaeyOaIyla baGaeyOaIyRaamiDaaaadaqadaqaaiabeQ7aRnaaBaaaleaacaWGZb aabeaakiaaykW7ruavP1wzZbItLDhis9wBH5gaiuqaceqFPbGbaSaa daWgaaWcbaGaam4CaaqabaaakiaawIcacaGLPaaacaaMc8Uaeyypa0 ZaaSaaaeaacqGHciITaeaacqGHciITcaWG0baaaiaaykW7daqadaqa aiqbeQ7aRzaaiaWaaSbaaSqaaiaadohaaeqaaOGaaGPaVlqa9Lgaga acgaWcamaaBaaaleaacaWGZbaabeaaaOGaayjkaiaawMcaaiaacYca caaMc8UaaGPaVlaaykW7caaMc8Uab0xAayaaiyaalyaacaWaaSbaaS qaaiaadohaaeqaaOGaaGPaVlabg2da9iaaykW7cuWFjpWDgaWcaiaa ykW7cqGHxdaTcaaMc8Uab0xAayaalyaaiaWaaSbaaSqaaiaadohaae qaaOGaai4oaaqaamaalaaabaGaeyOaIylabaGaeyOaIyRaamiDaaaa daqadaqaaiabeQ7aRnaaBaaaleaacaWGZbaabeaakiaaykW7ceqFPb GbaSaadaWgaaWcbaGaam4CaaqabaaakiaawIcacaGLPaaacqGH9aqp caaMc8UafqOUdSMbaiaadaWgaaWcbaGaam4CaaqabaGccaaMc8Uab0 xAayaalaWaaSbaaSqaaiaadohaaeqaaOGaaiilaiaaykW7caaMc8Ua aGPaVlaaykW7daWcaaqaaiabgkGi2cqaaiabgkGi2kaadshaaaGaaG PaVpaabmaabaGafqOUdSMbaGaadaWgaaWcbaGaam4CaaqabaGccaaM c8Uab0xAayaaiyaalaWaaSbaaSqaaiaadohaaeqaaaGccaGLOaGaay zkaaGaaGPaVlabg2da9iaaykW7cuaH6oWAgaacgaGaamaaBaaaleaa caWGZbaabeaakiaaykW7ceqFPbGbaGGbaSaadaWgaaWcbaGaam4Caa qabaGccaaMc8Uaey4kaSIaaGPaVlqbeQ7aRzaaiaWaaSbaaSqaaiaa dohaaeqaaOGaaGPaVlqa9LgagaacgaWcgaGaamaaBaaaleaacaWGZb aabeaakiaacUdaaeaacuWF6oWAgaWcgaGaaiaaykW7cqGH9aqpcaaM c8UafqOUdSMbaGGbaiaadaWgaaWcbaGaam4CaaqabaGccaaMc8Uab0 xAayaaiyaalaWaaSbaaSqaaiaadohaaeqaaOGaaGPaVlabgUcaRiaa ykW7cuWFjpWDgaWcaiaaykW7cqGHxdaTcaaMc8+aaeWaaeaacuaH6o WAgaacamaaBaaaleaacaWGZbaabeaakiaaykW7ceqFPbGbaGGbaSaa daWgaaWcbaGaam4CaaqabaaakiaawIcacaGLPaaacaaMc8Uaeyypa0 JaaGPaVlqbeQ7aRzaaiyaacaWaaSbaaSqaaiaadohaaeqaaOGaaGPa Vlqa9LgagaacgaWcamaaBaaaleaacaWGZbaabeaakiaaykW7cqGHRa WkcaaMc8Uaf8xYdCNbaSaacaaMc8Uaey41aqRaaGPaVlqb=P7aRzaa laGaai4oaaaeeG+aaaaaaivzKbWdbeaapaGafqOUdSMbaGGbaiaada WgaaWcbaGaam4CaaqabaGccaaMc8Uab0xAayaaiyaalaWaaSbaaSqa aiaadohaaeqaaOGaaGPaVlabg2da9iaaykW7cuWF6oWAgaWcgaGaai aaykW7cqGHsislcaaMc8Uaf8xYdCNbaSaacaaMc8Uaey41aqRaf8NU dSMbaSaacqWFSaalaaaa@07CA@                        (3.3)

где κ ˜ ˙ s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuaH6oWAgaacgaGaamaaBaaaleaacaWGZbaabe aaaaa@33F7@ – производная компонент вектора кривизны, связанная с фиксированным материальным сечением вала z,t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaiaadQhacaGGSaGaamiDaaGaayjkai aawMcaaaaa@353B@ , которая входит в выражение скорости деформации.

Тогда уравнение состояния для вращающегося вала (одномерного объекта) от переменных κ , κ ˙ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaGadaqaaGGabiqb=P7aRzaalaGaaiilaiaayk W7cuWF6oWAgaWcgaGaaaGaay5Eaiaaw2haaaaa@3907@  в соответствии с линейной гипотезой внутреннего демпфирования в модели Кельвина–Фойхта будет уравнением изгибающего момента M κ , κ ˙ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqaceWFnbGbaS aadaqadaqaaGGabiqb+P7aRzaalaGaaiilaiqb+P7aRzaalyaacaaa caGLOaGaayzkaaaaaa@3D3E@ , которое для вала с одинаковыми изгибными жесткостями относительно осей O x ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpbGabmiEayaaiaaaaa@32EA@ , O y ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpbGabmyEayaaiaaaaa@32EB@  имеет вид:

  M κ , κ ˙ =E I R κ + T V κ ˜ ˙ s i ˜ s =E I R κ + T V κ ˙ ω × κ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaceWHnbGbaSaadaqadaqaaGGabiqb=P7aRzaala Gaaiilaiqb=P7aRzaalyaacaaacaGLOaGaayzkaaGaaGPaVlabg2da 9iaaykW7caWGfbGaamysamaaBaaaleaacaWGsbaabeaakiaaykW7da qadaqaaiqb=P7aRzaalaGaaGPaVlabgUcaRiaaykW7caWGubWaaSba aSqaaiaadAfaaeqaaOGaaGPaVlqbeQ7aRzaaiyaacaWaaSbaaSqaai aadohaaeqaaOGaaGPaVlqahMgagaWcgaacamaaBaaaleaacaWGZbaa beaaaOGaayjkaiaawMcaaiaaykW7cqGH9aqpcaaMc8UaamyraiaadM eadaWgaaWcbaGaamOuaaqabaGccaaMc8+aamWaaeaacuWF6oWAgaWc aiaaykW7cqGHRaWkcaaMc8UaamivamaaBaaaleaacaWGwbaabeaaki aaykW7daqadaqaaiqb=P7aRzaalyaacaGaaGPaVlabgkHiTiaaykW7 cuWFjpWDgaWcaiaaykW7cqGHxdaTcaaMc8Uaf8NUdSMbaSaaaiaawI cacaGLPaaaaiaawUfacaGLDbaaaaa@7502@ ,             (3.4)

где T V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGubWaaSbaaSqaaiaadAfaaeqaaaaa@32EA@ – характерное время (время релаксации) [10], полагаем, что T V 2π/ ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGubWaaSbaaSqaaiaadAfaaeqaaOGaaGPaVl ablQMi9iaaykW7daWcgaqaaiaaikdacaaMc8UaeqiWdahabaWaaqWa aeaaiiqacuWFjpWDgaWcaaGaay5bSlaawIa7aaaaaaa@4085@ .

Для записи инвариантного уравнения в матричной форме в неподвижном базисе Oxyz, a =a i 3 , b = b s i s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpbGaamiEaiaadMhacaWG6bGaaiilaiaayk W7caaMc8UaeyiaIiIaaGPaVhrbuLwBLnhiov2DGi1BTfMBaGabbiqa =fgagaWcaiaaykW7cqGH9aqpcaaMc8UaamyyaiaaykW7ceWFPbGbaS aadaWgaaWcbaGaaG4maaqabaGccaGGSaGaaGPaVlaaykW7ceWFIbGb aSaacaaMc8Uaeyypa0JaaGPaVlaadkgadaWgaaWcbaGaam4Caaqaba GccaaMc8Uab8xAayaalaWaaSbaaSqaaiaadohaaeqaaaaa@588C@  используется матрица R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWFsbaaaa@3769@ :

  a × b =a i 3 × b 1 i 1 + b 2 i 2 =a b 1 i 2 b 2 i 1 ; R:a i 3 × b aRb,c R 2 , c T Rc=0; R= 0 1 1 0 , R T =R,R R T =E,E= 1 0 0 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaerbuLwBLnhiov2DGi1BTfMBaGabbiqa=f gagaWcaiaaykW7cqGHxdaTcaaMc8Uab8NyayaalaGaaGPaVlabg2da 9iaaykW7caWGHbGaaGPaVlqa=LgagaWcamaaBaaaleaacaaIZaaabe aakiaaykW7cqGHxdaTcaaMc8+aaeWaaeaacaWGIbWaaSbaaSqaaiaa igdaaeqaaOGaaGPaVlqa=LgagaWcamaaBaaaleaacaaIXaaabeaaki aaykW7cqGHRaWkcaaMc8UaamOyamaaBaaaleaacaaIYaaabeaakiaa ykW7ceWFPbGbaSaadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPa aacaaMc8Uaeyypa0JaaGPaVlaadggacaaMc8+aaeWaaeaacaWGIbWa aSbaaSqaaiaaigdaaeqaaOGaaGPaVlqa=LgagaWcamaaBaaaleaaca aIYaaabeaakiaaykW7cqGHsislcaaMc8UaamOyamaaBaaaleaacaaI YaaabeaakiaaykW7ceWFPbGbaSaadaWgaaWcbaGaaGymaaqabaaaki aawIcacaGLPaaacaGG7aaabaGaa8NuaiaaykW7caGG6aGaaGPaVlaa ykW7caaMc8UaaGPaVlaadggacaaMc8Uab8xAayaalaWaaSbaaSqaai aaiodaaeqaaOGaaGPaVlabgEna0kaaykW7ceWFIbGbaSaacaaMc8Ua eyi1HSTaaGPaVlaadggacaaMc8Uaa8NuaiaaykW7caWFIbGaaiilai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyiaIiIaaGPaVlaa=nga cqGHiiIZcaWGsbWaaWbaaSqabeaacaaIYaaaaOGaaiilaiaaykW7ca aMc8UaaGPaVlaaykW7caWFJbWaaWbaaSqabeaacaWGubaaaOGaaGPa Vlaa=jfacaaMc8Uaa83yaiaaykW7cqGH9aqpcaaMc8UaaGimaiaacU daaeaacaWFsbGaaGPaVlabg2da9iaaykW7daWadaqaauaabeqaciaa aeaacaaIWaaabaGaeyOeI0IaaGPaVlaaigdaaeaacaaIXaaabaGaaG imaaaaaiaawUfacaGLDbaacaGGSaGaaGPaVlaaykW7caaMc8Uaa8Nu amaaCaaaleqabaGaamivaaaakiaaykW7cqGH9aqpcaaMc8UaeyOeI0 Iaa8NuaiaacYcacaaMc8UaaGPaVlaaykW7caaMc8Uaa8NuaiaaykW7 caWFsbWaaWbaaSqabeaacaWGubaaaOGaaGPaVlabg2da9iaaykW7ca WFfbGaaiilaiaaykW7caaMc8Uaa8xraiaaykW7cqGH9aqpcaaMc8+a amWaaeaafaqabeGacaaabaGaaGymaaqaaiaaicdaaeaacaaIWaaaba GaaGymaaaaaiaawUfacaGLDbaacaGGUaaaaaa@EBB6@                  (3.5)

Тогда векторное уравнение в матричной форме в неподвижном базисе принимает следующий вид:

  M=E I R κ+ T V κ ˙ T V ωRκ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWFnbGaaG PaVlabg2da9iaaykW7caWGfbGaamysamaaBaaaleaacaWGsbaabeaa kiaaykW7daqadaqaaGGabiab+P7aRjabgUcaRiaadsfadaWgaaWcba GaamOvaaqabaGccaaMc8Uaf4NUdSMbaiaacaaMc8UaeyOeI0IaaGPa VlaadsfadaWgaaWcbaGaamOvaaqabaGccaaMc8UaeqyYdCNaaGPaVl aa=jfacaaMc8Uae4NUdSgacaGLOaGaayzkaaaaaa@57D6@ .            (3.6)

Последнее слагаемое в (3.6), зависящее от угловой скорости E I R T V ωRκ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaiaadweacaWGjbWaaSbaaSqaaiaadk faaeqaaOGaaGPaVlaadsfadaWgaaWcbaGaamOvaaqabaGccaaMc8Ua eqyYdCNaaGPaVhrbuLwBLnhiov2DGi1BTfMBaGabbiaa=jfacaaMc8 occeGae4NUdSgacaGLOaGaayzkaaaaaa@4731@ , характерно для вращающихся деформируемых твердых тел. В данном случае именно это слагаемое в изгибающем моменте приводит к появлению циркуляционных сил и учитывает механизм передачи энергии вращения вала в изгиб вала, когда изгиб в одной плоскости вызывает изгиб в перпендикулярной плоскости, пропорционально скорости вращения вала ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHjpWDaaa@32D7@  и коэффициенту вязкости E T V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGfbGaamivamaaBaaaleaacaWGwbaabeaaaa a@33B4@ .

Учет дополнительных нелинейных членов в модели Кельвина–Фойхта можно провести в форме Коссера через скорость вектора кривизны в системе координат κ ˜ ˙ s i ˜ s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuaH6oWAgaacgaGaamaaBaaaleaacaWGZbaabe aakiaaykW7ruavP1wzZbItLDhis9wBH5gaiqqaceWFPbGbaSGbaGaa daWgaaWcbaGaam4Caaqabaaaaa@3D46@ , s=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGZbGaeyypa0JaaGymaiaacYcacaaMc8UaaG Omaaaa@36BA@ , вводя дополнительные слагаемые в законе состояния с вращающейся средой. Отметим, что скалярное произведение во вращаю­щейся системе κ ˜ ˙ s κ ˜ ˙ s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuaH6oWAgaacgaGaamaaBaaaleaacaWGZbaabe aakiaaykW7cuaH6oWAgaacgaGaamaaBaaaleaacaWGZbaabeaaaaa@3879@  (суммирование по немому индексу s=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGZbGaeyypa0JaaGymaiaacYcacaaMc8UaaG Omaaaa@36BA@  ) с учетом (3.3) вычисляется следующим образом в инвариантной форме:

κ ˜ ˙ s κ ˜ ˙ s = κ ˜ ˙ s i ˜ s κ ˜ ˙ t i ˜ t = κ ˙ ω × κ κ ˙ ω × κ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuaH6oWAgaacgaGaamaaBaaaleaacaWGZbaabe aakiqbeQ7aRzaaiyaacaWaaSbaaSqaaiaadohaaeqaaOGaaGPaVlab g2da9iaaykW7daqadaqaaiqbeQ7aRzaaiyaacaWaaSbaaSqaaiaado haaeqaaOGaaGPaVhrbuLwBLnhiov2DGi1BTfMBaGabbiqa=LgagaWc gaacamaaBaaaleaacaWGZbaabeaaaOGaayjkaiaawMcaaiaaykW7cq GHflY1caaMc8+aaeWaaeaacuaH6oWAgaacgaGaamaaBaaaleaacaWG 0baabeaakiaaykW7ceWFPbGbaSGbaGaadaWgaaWcbaGaamiDaaqaba aakiaawIcacaGLPaaacaaMc8Uaeyypa0JaaGPaVpaabmaabaacceGa f4NUdSMbaSGbaiaacaaMc8UaeyOeI0IaaGPaVlqb+L8a3zaalaGaaG PaVlabgEna0kaaykW7cuGF6oWAgaWcaaGaayjkaiaawMcaaiaaykW7 cqGHflY1caaMc8+aaeWaaeaacuGF6oWAgaWcgaGaaiaaykW7cqGHsi slcaaMc8Uaf4xYdCNbaSaacaaMc8Uaey41aqRaaGPaVlqb+P7aRzaa laaacaGLOaGaayzkaaGaaGPaVdaa@81C6@ .

Например, по индукции можно учесть нелинейный, кубический член в линейной модели Кельвина–Фойхта (3.4), добавляя кубическое слагаемое κ ˜ ˙ s κ ˜ ˙ s κ ˙ ω × κ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuaH6oWAgaacgaGaamaaBaaaleaacaWGZbaabe aakiaaykW7cuaH6oWAgaacgaGaamaaBaaaleaacaWGZbaabeaakiaa ykW7daqadaqaaeXafv3ySLgzGmvETj2BSbaceeGaf8NUdSMbaSGbai aacaaMc8UaeyOeI0IaaGPaVlqb=L8a3zaalaGaaGPaVlabgEna0kaa ykW7cuWF6oWAgaWcaaGaayjkaiaawMcaaaaa@4F34@ :

  M κ , κ ˙ =E I R κ + T V + T VV κ ˜ ˙ s κ ˜ ˙ s κ ˜ ˙ t i ˜ t = =E I R κ + T V + T VV κ ˜ ˙ s κ ˜ ˙ s κ ˙ ω × κ = =E I R κ + T V + T VV κ ˙ ω × κ κ ˙ ω × κ κ ˙ ω × κ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaerbuLwBLnhiov2DGi1BTfMBaGabbiqa=1 eagaWcamaabmaabaacceGaf4NUdSMbaSaacaGGSaGaaGPaVlqb+P7a RzaalyaacaaacaGLOaGaayzkaaGaaGPaVlabg2da9iaaykW7caWGfb GaamysamaaBaaaleaacaWGsbaabeaakiaaykW7daWadaqaaiqb+P7a RzaalaGaaGPaVlabgUcaRiaaykW7daqadaqaaiaadsfadaWgaaWcba GaamOvaaqabaGccaaMc8Uaey4kaSIaaGPaVlaadsfadaWgaaWcbaGa amOvaiaadAfaaeqaaOGaaGPaVlqbeQ7aRzaaiyaacaWaaSbaaSqaai aadohaaeqaaOGafqOUdSMbaGGbaiaadaWgaaWcbaGaam4Caaqabaaa kiaawIcacaGLPaaacaaMc8UafqOUdSMbaGGbaiaadaWgaaWcbaGaam iDaaqabaGccaaMc8Uab8xAayaalyaaiaWaaSbaaSqaaiaadshaaeqa aaGccaGLBbGaayzxaaGaaGPaVlabg2da9iaaykW7aeaacaaMf8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpcaaMc8Uaamyraiaa dMeadaWgaaWcbaGaamOuaaqabaGccaaMc8+aamWaaeaacuGF6oWAga WcaiaaykW7cqGHRaWkcaaMc8+aaeWaaeaacaWGubWaaSbaaSqaaiaa dAfaaeqaaOGaaGPaVlabgUcaRiaaykW7caWGubWaaSbaaSqaaiaadA facaWGwbaabeaakiaaykW7cuaH6oWAgaacgaGaamaaBaaaleaacaWG ZbaabeaakiaaykW7cuaH6oWAgaacgaGaamaaBaaaleaacaWGZbaabe aaaOGaayjkaiaawMcaaiaaykW7daqadaqaaiqb+P7aRzaalyaacaGa aGPaVlabgkHiTiaaykW7cuGFjpWDgaWcaiaaykW7cqGHxdaTcaaMc8 Uaf4NUdSMbaSaaaiaawIcacaGLPaaaaiaawUfacaGLDbaacaaMc8Ua eyypa0JaaGPaVdqaaiaaywW7caaMc8UaaGPaVlaaykW7caaMc8Uaey ypa0JaaGPaVlaadweacaWGjbWaaSbaaSqaaiaadkfaaeqaaOGaaGPa VpaadmaabaGaf4NUdSMbaSaacaaMc8Uaey4kaSIaaGPaVpaadmaaba GaamivamaaBaaaleaacaWGwbaabeaakiaaykW7cqGHRaWkcaaMc8Ua amivamaaBaaaleaacaWGwbGaamOvaaqabaGccaaMc8+aaeWaaeaacu GF6oWAgaWcgaGaaiaaykW7cqGHsislcaaMc8Uaf4xYdCNbaSaacaaM c8Uaey41aqRaaGPaVlqb+P7aRzaalaaacaGLOaGaayzkaaGaaGPaVl abgwSixlaaykW7daqadaqaaiqb+P7aRzaalyaacaGaaGPaVlabgkHi TiaaykW7cuGFjpWDgaWcaiaaykW7cqGHxdaTcaaMc8Uaf4NUdSMbaS aaaiaawIcacaGLPaaaaiaawUfacaGLDbaacaaMc8+aaeWaaeaacuGF 6oWAgaWcgaGaaiaaykW7cqGHsislcaaMc8Uaf4xYdCNbaSaacaaMc8 Uaey41aqRaaGPaVlqb+P7aRzaalaaacaGLOaGaayzkaaaacaGLBbGa ayzxaaGaaiOlaaaaaa@0796@                             (3.7)

где T VV MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGubWaaSbaaSqaaiaadAfacaWGwbaabeaaaa a@33C5@ – коэффициент, характеризующий степень кубической нелинейности диссипативных свойств материла вала.

Отображение инвариантного уравнения с кубической нелинейностью скоростей деформации в модели Кельвина–Фойхта в матричном виде в неподвижном базисе с учетом (3.5) и (3.6) принимает вид:

  M κ, κ ˙ =E I R κ+E I R T V 1+B κ ˙ ωRκ T κ ˙ ωRκ κ ˙ ωRκ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWFnbWaae WaaeaaiiqacqGF6oWAcaGGSaGaaGPaVlqb+P7aRzaacaaacaGLOaGa ayzkaaGaaGPaVlabg2da9iaaykW7caWGfbGaamysamaaBaaaleaaca WGsbaabeaakiaaykW7cqGF6oWAcaaMc8Uaey4kaSIaaGPaVlaadwea caWGjbWaaSbaaSqaaiaadkfaaeqaaOGaaGPaVlaadsfadaWgaaWcba GaamOvaaqabaGccaaMc8+aamWaaeaacaaIXaGaaGPaVlabgUcaRiaa ykW7caWGcbGaaGPaVpaabmaabaGaf4NUdSMbaiaacaaMc8UaeyOeI0 IaaGPaVlabeM8a3jaaykW7caWFsbGaaGPaVlab+P7aRbGaayjkaiaa wMcaamaaCaaaleqabaGaamivaaaakiaaykW7daqadaqaaiqb+P7aRz aacaGaaGPaVlabgkHiTiaaykW7cqaHjpWDcaaMc8Uaa8NuaiaaykW7 cqGF6oWAaiaawIcacaGLPaaaaiaawUfacaGLDbaacaaMc8+aaeWaae aacuGF6oWAgaGaaiaaykW7cqGHsislcaaMc8UaeqyYdCNaaGPaVlaa =jfacaaMc8Uae4NUdSgacaGLOaGaayzkaaaaaa@8D2F@ ,              (3.8)

где B= T VV / T V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGcbGaeyypa0ZaaSGbaeaacaWGubWaaSbaaS qaaiaadAfacaWGwbaabeaaaOqaaiaadsfadaWgaaWcbaGaamOvaaqa baaaaaaa@3792@ .

Аналогичным образом можно ввести нелинейность любого нечетного порядка, например, нелинейность пятого порядка.

4. Учет кубической нелинейности в законе упругости. Аналогично кубическому демпфированию в законе можно учесть и кубическую нелинейность упругих сил по кривизне с коэффициентом A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGbbaaaa@31D0@ :

  M κ, κ ˙ =E I R 1+A κ T κ κ+ +E I R T V 1+B κ ˙ ωRκ T κ ˙ ωRκ κ ˙ ωRκ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaerbuLwBLnhiov2DGi1BTfMBaGabbiaa=1 eadaqadaqaaGGabiab+P7aRjaacYcacaaMc8Uaf4NUdSMbaiaaaiaa wIcacaGLPaaacaaMc8Uaeyypa0JaaGPaVlaadweacaWGjbWaaSbaaS qaaiaadkfaaeqaaOGaaGPaVpaadmaabaGaaGymaiaaykW7cqGHRaWk caaMc8UaamyqaiaaykW7daqadaqaaiab+P7aRnaaCaaaleqabaGaam ivaaaakiaaykW7cqGF6oWAaiaawIcacaGLPaaaaiaawUfacaGLDbaa caaMc8Uae4NUdSMaaGPaVlabgUcaRaqaaiaaykW7caaMc8Uaey4kaS IaamyraiaadMeadaWgaaWcbaGaamOuaaqabaGccaaMc8Uaamivamaa BaaaleaacaWGwbaabeaakiaaykW7daWadaqaaiaaigdacaaMc8Uaey 4kaSIaaGPaVlaadkeacaaMc8+aaeWaaeaacuGF6oWAgaGaaiaaykW7 cqGHsislcaaMc8UaeqyYdCNaaGPaVlaa=jfacaaMc8Uae4NUdSgaca GLOaGaayzkaaWaaWbaaSqabeaacaWGubaaaOGaaGPaVpaabmaabaGa f4NUdSMbaiaacaaMc8UaeyOeI0IaaGPaVlabeM8a3jaaykW7caWFsb GaaGPaVlab+P7aRbGaayjkaiaawMcaaaGaay5waiaaw2faaiaaykW7 daqadaqaaiqb+P7aRzaacaGaaGPaVlabgkHiTiaaykW7cqaHjpWDca aMc8Uaa8NuaiaaykW7cqGF6oWAaiaawIcacaGLPaaacaGGUaaaaaa@A252@                                           (4.1)

где A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGbbaaaa@31D0@ – коэффициент, характеризующий степень нелинейностей упругости материала вала.

5. Уравнения движения вращающегося вала.  Для записи уравнения движения введем вектор прогибов вала u z,t = u x u y T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWF1bWaae WaaeaacaWG6bGaaiilaiaaykW7caWG0baacaGLOaGaayzkaaGaaGPa Vlabg2da9iaaykW7daGadaqaauaabeqabiaaaeaacaWG1bWaaSbaaS qaaiaadIhaaeqaaaGcbaGaamyDamaaBaaaleaacaWG5baabeaaaaaa kiaawUhacaGL9baadaahaaWcbeqaaiaadsfaaaaaaa@4903@ , который связан с вектором поворота сечений ϑ z,t = ϑ x ϑ y T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaarmqr1ngBPrgitLxBI9gBaGabbiab=f9aknaabm aabaGaamOEaiaacYcacaaMc8UaamiDaaGaayjkaiaawMcaaiaaykW7 cqGH9aqpcaaMc8+aaiWaaeaafaqabeqacaaabaGaeqy0dO0aaSbaaS qaaiaadIhaaeqaaaGcbaGaeqy0dO0aaSbaaSqaaiaadMhaaeqaaaaa aOGaay5Eaiaaw2haamaaCaaaleqabaGaamivaaaaaaa@4A8D@  и вектором кривизны κ z,t = κ x κ y T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiqacqWF6oWAdaqadaqaaiaadQhacaGGSaGaam iDaaGaayjkaiaawMcaaiabg2da9maacmaabaqbaeqabeGaaaqaaiab eQ7aRnaaBaaaleaacaWG4baabeaaaOqaaiabeQ7aRnaaBaaaleaaca WG5baabeaaaaaakiaawUhacaGL9baadaahaaWcbeqaaiaadsfaaaaa aa@4108@  относительно осей Ox MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpbGaamiEaaaa@32DB@ , Oy MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpbGaamyEaaaa@32DC@  дифференциальными соотношениями:

ϑ=R u ,κ= ϑ =R u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaarmqr1ngBPrgitLxBI9gBaGabbiab=f9akjaayk W7cqGH9aqpcaaMc8EefqvATv2CG4uz3bIuV1wyUbacfeGaa4Nuaiaa ykW7ceGF1bGbauaacaGGSaGaaGPaVlaaykW7iiqacqqF6oWAcaaMc8 Uaeyypa0JaaGPaVlqb=f9akzaafaGaaGPaVlabg2da9iaaykW7caGF sbGaaGPaVlqa+vhagaGbaaaa@5783@ .

Тогда, пренебрегая инерцией поворота сечений при изгибе, уравнения движения вала с погонной массой m R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGTbWaaSbaaSqaaiaadkfaaeqaaaaa@32FF@  при действии линейного внешнего трения с коэффициентом d e MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGKbWaaSbaaSqaaiaadwgaaeqaaaaa@3309@  могут быть записаны в следующем виде [14]:

  m R u ¨ z,t = Q z,t d e u ˙ z,t 0= M z,t +RQ z,t m R u ¨ z,t =R M z,t d e u ˙ z,t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaGacaabaeqabaGaamyBamaaBaaaleaacaWGsb aabeaakiaaykW7ruavP1wzZbItLDhis9wBH5gaiqqaceWF1bGbamaa daqadaqaaiaadQhacaGGSaGaamiDaaGaayjkaiaawMcaaiaaykW7cq GH9aqpcaaMc8Uab8xuayaafaWaaeWaaeaacaWG6bGaaiilaiaadsha aiaawIcacaGLPaaacaaMc8UaeyOeI0IaamizamaaBaaaleaacaWGLb aabeaakiqa=vhagaGaamaabmaabaGaamOEaiaacYcacaWG0baacaGL OaGaayzkaaaabaGaaCimaiaaykW7cqGH9aqpcaaMc8Uab8xtayaafa WaaeWaaeaacaWG6bGaaiilaiaadshaaiaawIcacaGLPaaacaaMc8Ua ey4kaSIaaGPaVlaa=jfacaaMc8Uaa8xuamaabmaabaGaamOEaiaacY cacaWG0baacaGLOaGaayzkaaaaaiaaw2haaiaaykW7caaMc8UaeyO0 H4TaamyBamaaBaaaleaacaWGsbaabeaakiaaykW7ceWF1bGbamaada qadaqaaiaadQhacaGGSaGaamiDaaGaayjkaiaawMcaaiaaykW7cqGH 9aqpcaaMc8Uaa8NuaiaaykW7ceWFnbGbayaadaqadaqaaiaadQhaca GGSaGaamiDaaGaayjkaiaawMcaaiaaykW7cqGHsislcaWGKbWaaSba aSqaaiaadwgaaeqaaOGaaGPaVlqa=vhagaGaamaabmaabaGaamOEai aacYcacaWG0baacaGLOaGaayzkaaaaaa@8D7A@ ,             (5.1)

где Q z,t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWFrbWaae WaaeaacaWG6bGaaiilaiaadshaaiaawIcacaGLPaaaaaa@3B99@  и M z,t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWFnbWaae WaaeaacaWG6bGaaiilaiaadshaaiaawIcacaGLPaaaaaa@3B95@  – векторы сосредоточенных поперечных сил и изгибающих моментов соответственно.

Объединяя уравнения (4.1) и (5.1), получим:

  E I R u + T V E I R u ˙ ωR u = = m R u ¨ E I R A G NL u + T VV F NL u ˙ ωR u d e u ˙ ; F NL = u ˙ T u ˙ 2ω u ˙ T R u + ω 2 u T u ; G NL = u T u . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiaadweacaWGjbWaaSbaaSqaaiaadkfaae qaaerbuLwBLnhiov2DGi1BTfMBaGabbOGab8xDayaafyaafyaafyaa faGaey4kaSIaamivamaaBaaaleaacaWGwbaabeaakiaaykW7caWGfb GaamysamaaBaaaleaacaWGsbaabeaakmaabmaabaGaaGPaVlqa=vha gaGagaqbgaqbgaqbgaqbaiabgkHiTiabeM8a3jaaykW7caWFsbGaaG PaVlqa=vhagaqbgaqbgaqbgaqbaaGaayjkaiaawMcaaiabg2da9aqa aiabg2da9iabgkHiTiaad2gadaWgaaWcbaGaamOuaaqabaGcceWF1b GbamaacqGHsislcaWGfbGaamysamaaBaaaleaacaWGsbaabeaakmaa dmaabaGaamyqaiaadEeadaWgaaWcbaGaamOtaiaadYeaaeqaaOGaaG PaVlqa=vhagaGbaiabgUcaRiaadsfadaWgaaWcbaGaamOvaiaadAfa aeqaaOGaaGPaVlaadAeadaWgaaWcbaGaamOtaiaadYeaaeqaaOWaae WaaeaaceWF1bGbayGbaiaacqGHsislcqaHjpWDcaaMc8Uaa8Nuaiaa ykW7ceWF1bGbayaaaiaawIcacaGLPaaaaiaawUfacaGLDbaadaahaa WcbeqaaOGamai8gkdiIUGaaGzaVRGamai8gkdiIcaacqGHsislcaWG KbWaaSbaaSqaaiaadwgaaeqaaOGab8xDayaacaGaai4oaaqaaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaamOramaaBaaaleaacaWGobGa amitaaqabaGccqGH9aqpdaqadaqaamaabmaabaGab8xDayaagyaaca aacaGLOaGaayzkaaWaaWbaaSqabeaacaWGubaaaOGab8xDayaagyaa caGaaGPaVlabgkHiTiaaykW7caaIYaGaaGPaVlabeM8a3jaaykW7da qadaqaaiqa=vhagaGbgaGaaaGaayjkaiaawMcaamaaCaaaleqabaGa amivaaaakiaaykW7caWFsbGaaGPaVlqa=vhagaGbaiaaykW7cqGHRa WkcaaMc8UaeqyYdC3aaWbaaSqabeaacaaIYaaaaOGaaGPaVpaabmaa baGab8xDayaagaaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGubaaaO GaaGPaVlqa=vhagaGbaaGaayjkaiaawMcaaiaacUdaaeabG8VaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caWGhbWaaSbaaSqaaiaad6eaca WGmbaabeaakiabg2da9maabmaabaWaaeWaaeaaceWF1bGbayaaaiaa wIcacaGLPaaadaahaaWcbeqaaiaadsfaaaGccaaMc8Uab8xDayaaga aacaGLOaGaayzkaaGaaiOlaaaaaa@C54C@                               (5.2)

Переход к безразмерным переменным и величинам осуществляется выбором двух масштабов U :=l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGvbWaaSbaaSqaaiabgEHiQaqabaGccaGG6a Gaeyypa0JaaGPaVlaaykW7caaMc8UaamiBaaaa@3A5F@ , T = m R l 4 / E I R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGubWaaSbaaSqaaiabgEHiQaqabaGccaaMc8 Uaeyypa0JaaGPaVpaakaaabaWaaSGbaeaacaWGTbWaaSbaaSqaaiaa dkfaaeqaaOGaamiBamaaCaaaleqabaGaaGinaaaaaOqaaiaadweaca WGjbWaaSbaaSqaaiaadkfaaeqaaaaaaeqaaaaa@3DCA@  и безразмерных комплексов:

ζ=z/ U * ,ξ=u/ U * ,τ=t/ T * , η V = T V / 2 T * , η e = d e l 4 / 2E I R T * ,Ω=ω T V ; η VV = T VV / 2 T * 3 l 2 ,α=A/ l 2 , f NL = F NL T * 2 l 2 , g NL = G NL l 2 ; x ˙ = T * x t = x τ , x = U * x z = x ζ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiabeA7a6jabg2da9iaaykW7daWcgaqaai aadQhaaeaacaWGvbWaaSbaaSqaaiaacQcaaeqaaaaakiaacYcacaaM c8UaaGPaVJGabiab=57a4jabg2da9maalyaabaqefqvATv2CG4uz3b IuV1wyUbaceeGaa4xDaaqaaiaadwfadaWgaaWcbaGaaiOkaaqabaaa aOGaaiilaiaaykW7caaMc8UaeqiXdqNaeyypa0ZaaSGbaeaacaWG0b aabaGaamivamaaBaaaleaacaGGQaaabeaaaaGccaGGSaGaaGPaVlaa ykW7cqaH3oaAdaWgaaWcbaGaamOvaaqabaGccqGH9aqpdaWcgaqaai aadsfadaWgaaWcbaGaamOvaaqabaaakeaadaqadaqaaiaaikdacaWG ubWaaSbaaSqaaiaacQcaaeqaaaGccaGLOaGaayzkaaaaaiaacYcaca aMc8UaaGPaVlabeE7aOnaaBaaaleaacaWGLbaabeaakiabg2da9maa lyaabaGaamizamaaBaaaleaacaWGLbaabeaakiaadYgadaahaaWcbe qaaiaaisdaaaaakeaadaqadaqaaiaaikdacaWGfbGaamysamaaBaaa leaacaWGsbaabeaakiaadsfadaWgaaWcbaGaaiOkaaqabaaakiaawI cacaGLPaaaaaGaaiilaiaaykW7caaMc8UaeuyQdCLaeyypa0JaeqyY dCNaamivamaaBaaaleaacaWGwbaabeaakiaacUdaaeaacaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8+aaSGbaeaacqaH3oaAdaWgaaWcbaGaamOvaiaadAfaaeqaaOGaey ypa0JaamivamaaBaaaleaacaWGwbGaamOvaaqabaaakeaadaqadaqa aiaaikdacaWGubWaaSbaaSqaaiaacQcaaeqaaOWaaWbaaSqabeaaca aIZaaaaOGaamiBamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMca aaaacaGGSaGaaGPaVlaaykW7cqaHXoqycqGH9aqpdaWcgaqaaiaadg eaaeaacaWGSbWaaWbaaSqabeaacaaIYaaaaaaakiaacYcacaaMc8Ua aGPaVlaadAgadaWgaaWcbaGaamOtaiaadYeaaeqaaOGaeyypa0Jaam OramaaBaaaleaacaWGobGaamitaaqabaGccaWGubWaaSbaaSqaaiaa cQcaaeqaaOWaaWbaaSqabeaacaaIYaaaaOGaamiBamaaCaaaleqaba GaaGOmaaaakiaacYcacaaMc8UaaGPaVlaadEgadaWgaaWcbaGaamOt aiaadYeaaeqaaOGaeyypa0Jaam4ramaaBaaaleaacaWGobGaamitaa qabaGccaWGSbWaaWbaaSqabeaacaaIYaaaaOGaai4oaaqaaiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlqa dIhagaGaaiaaykW7cqGH9aqpcaaMc8+aaSaaaeaacaWGubWaaSbaaS qaaiaacQcaaeqaaOGaaGPaVlabgkGi2kaaykW7caWG4baabaGaeyOa IyRaaGPaVlaadshaaaGaaGPaVlabg2da9iaaykW7daWcaaqaaiabgk Gi2kaaykW7caWG4baabaGaeyOaIyRaaGPaVlabes8a0baacaGGSaGa aGPaVlaaykW7ceWG4bGbauaacaaMc8Uaeyypa0JaaGPaVpaalaaaba GaamyvamaaBaaaleaacaGGQaaabeaakiaaykW7cqGHciITcaaMc8Ua amiEaaqaaiabgkGi2kaaykW7caWG6baaaiaaykW7cqGH9aqpcaaMc8 +aaSaaaeaacqGHciITcaaMc8UaamiEaaqaaiabgkGi2kaaykW7cqaH 2oGEaaGaaiOlaaaaaa@2F53@  (5.3)

С учетом (5.3) уравнение движения принимает следующий безразмерный вид:

ξ +2 η V ξ ˙ ΩR ξ =2 η e ξ ˙ ξ ¨ α g NL ξ +2 η VV f NL ξ ˙ ΩR ξ ; f NL = ξ ˙ T ξ ˙ 2Ω ξ ˙ T R ξ + Ω 2 ξ T ξ ; g NL = ξ T ξ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaGGabiqb=57a4zaagyaagaGaaGPaVlabgU caRiaaykW7caaIYaGaaGPaVlabeE7aOnaaBaaaleaacaWGwbaabeaa kiaaykW7daqadaqaaiqb=57a4zaacyaagyaagaGaaGPaVlabgkHiTi aaykW7cqqHPoWvcaaMc8ocbeGaa4NuaiaaykW7caaMc8Uaf8NVdGNb ayGbayaaaiaawIcacaGLPaaacaaMc8Uaeyypa0JaeyOeI0IaaGPaVl aaikdacaaMc8Uaeq4TdG2aaSbaaSqaaiaadwgaaeqaaOGaaGPaVlqb =57a4zaacaGaeyOeI0IaaGPaVlqb=57a4zaadaGaeyOeI0IaaGPaVp aadmaabaGaeqySdeMaaGPaVlaadEgadaWgaaWcbaGaamOtaiaaykW7 caWGmbaabeaakiaaykW7cuWF+oaEgaGbaiaaykW7cqGHRaWkcaaMc8 UaaGOmaiaaykW7cqaH3oaAdaWgaaWcbaGaamOvaiaaykW7caWGwbaa beaakiaaykW7caWGMbWaaSbaaSqaaiaad6eacaWGmbaabeaakiaayk W7daqadaqaaiqb=57a4zaacyaagaGaaGPaVlabgkHiTiaaykW7cqqH PoWvcaaMc8Uaa4NuaiaaykW7caaMc8Uaf8NVdGNbayaaaiaawIcaca GLPaaaaiaawUfacaGLDbaadaahaaWcbeqaaOGamai4gkdiIUGaaGza VRGamai4gkdiIcaacaGG7aaabaGaamOzamaaBaaaleaacaWGobGaam itaaqabaGccqGH9aqpdaqadaqaamaabmaabaGaf8NVdGNbaiGbayaa aiaawIcacaGLPaaadaahaaWcbeqaaiaaykW7caaMc8Uaamivaiaayk W7aaGccaaMc8Uaf8NVdGNbaiGbayaacaaMc8UaeyOeI0IaaGPaVlaa ikdacaaMc8UaeuyQdCLaaGPaVpaabmaabaGaf8NVdGNbaiGbayaaai aawIcacaGLPaaadaahaaWcbeqaaiaaykW7caaMc8Uaamivaaaakiaa ykW7caGFsbGaaGPaVlaaykW7cuWF+oaEgaGbaiaaykW7cqGHRaWkca aMc8UaeuyQdC1aaWbaaSqabeaacaaIYaaaaOGaaGPaVpaabmaabaGa f8NVdGNbayaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaykW7caaMc8 UaamivaaaakiaaykW7cuWF+oaEgaGbaaGaayjkaiaawMcaaiaacUda aeabG8Vaam4zamaaBaaaleaacaWGobGaamitaaqabaGccqGH9aqpda qadaqaaiqb=57a4zaagaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaM c8UaaGPaVlaadsfaaaGccaaMc8Uaf8NVdGNbayaacaGGUaaaaaa@E664@  (5.4)

6. Получение разрешающего уравнения движения. Для сведения уравнения в частных производных к обыкновенному дифференциальному уравнению представим решение в интегральном виде с использованием функции Грина для статического прогиба стержня Бернулли–Эйлера G 40 ζ,s =δ ζs MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGhbWaaSbaaSqaaiaaisdacaaMc8UaaGimaa qabaGcdaqadaqaaiabeA7a6jaacYcacaWGZbaacaGLOaGaayzkaaGa eyypa0JaeqiTdq2aaeWaaeaacqaH2oGEcqGHsislcaWGZbaacaGLOa Gaayzkaaaaaa@41D3@ , где G kl = k l G ζ,s / ζ k s l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGhbWaaSbaaSqaaiaadUgacaaMc8UaamiBaa qabaGccqGH9aqpdaWcgaqaaiabgkGi2oaaCaaaleqabaGaam4Aaaaa kiabgkGi2oaaCaaaleqabaGaamiBaaaakiaaykW7caWGhbWaaeWaae aacqaH2oGEcaGGSaGaam4CaaGaayjkaiaawMcaaaqaaiabgkGi2kab eA7a6naaCaaaleqabaGaam4AaaaakiabgkGi2kaadohadaahaaWcbe qaaiaadYgaaaaaaaaa@4ABA@ :

    ξ ζ,τ +2 η V ξ ˙ ζ,τ ΩRξ ζ,τ = = 0 1 G 00 ζ,s 2 η e ξ ˙ s,τ ξ ¨ s,τ ds 0 1 G 00 ζ,s α g NL ξ s,τ +2 η VV f NL ξ ˙ s,τ ΩR ξ s,τ ds . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaGGabiab=57a4naabmaabaGaeqOTdONaai ilaiabes8a0bGaayjkaiaawMcaaiabgUcaRiaaikdacqaH3oaAdaWg aaWcbaGaamOvaaqabaGcdaqadaqaaiqb=57a4zaacaWaaeWaaeaacq aH2oGEcaGGSaGaeqiXdqhacaGLOaGaayzkaaGaaGPaVlabgkHiTiaa ykW7cqqHPoWvcaaMc8ocbeGaa4NuaiaaykW7cqWF+oaEdaqadaqaai abeA7a6jaacYcacqaHepaDaiaawIcacaGLPaaaaiaawIcacaGLPaaa cqGH9aqpaeaacaaMc8UaaGPaVlaaykW7cqGH9aqpdaWdXbqaaiaadE eadaWgaaWcbaGaaGimaiaaykW7caaIWaaabeaakmaabmaabaGaeqOT dONaaiilaiaadohaaiaawIcacaGLPaaadaWadaqaaiabgkHiTiaayk W7caaIYaGaaGPaVlabeE7aOnaaBaaaleaacaWGLbaabeaakiaaykW7 cuWF+oaEgaGaamaabmaabaGaam4CaiaacYcacqaHepaDaiaawIcaca GLPaaacqGHsislcaaMc8Uaf8NVdGNbamaadaqadaqaaiaadohacaGG SaGaeqiXdqhacaGLOaGaayzkaaaacaGLBbGaayzxaaGaamizaiaado haaSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGccqGHsislaeaacaaM c8UaaGPaVlaaykW7cqGHsisldaWdXbqaaiaadEeadaWgaaWcbaGaaG imaiaaykW7caaIWaaabeaakmaabmaabaGaeqOTdONaaiilaiaadoha aiaawIcacaGLPaaadaWadaqaaiabeg7aHjaaykW7caWGNbWaaSbaaS qaaiaad6eacaaMc8UaamitaaqabaGccaaMc8Uaf8NVdGNbayaadaqa daqaaiaadohacaGGSaGaeqiXdqhacaGLOaGaayzkaaGaaGPaVlabgU caRiaaykW7caaIYaGaaGPaVlabeE7aOnaaBaaaleaacaWGwbGaaGPa VlaadAfaaeqaaOGaaGPaVlaadAgadaWgaaWcbaGaamOtaiaadYeaae qaaOGaaGPaVpaabmaabaGaf8NVdGNbaiGbayaadaqadaqaaiaadoha caGGSaGaeqiXdqhacaGLOaGaayzkaaGaaGPaVlabgkHiTiaaykW7cq qHPoWvcaaMc8Uaa4NuaiaaykW7caaMc8Uaf8NVdGNbayaadaqadaqa aiaadohacaGGSaGaeqiXdqhacaGLOaGaayzkaaaacaGLOaGaayzkaa aacaGLBbGaayzxaaWaaWbaaSqabeaakiadacVHYaIOliaaygW7kiad acVHYaIOaaGaamizaiaadohaaSqaaiaaicdaaeaacaaIXaaaniabgU IiYdGccaGGUaaaaaa@E210@       (6.1)

Статическая функция Грина для стержня, жестко закрепленного в концевых сечениях, имеет вид:

  G 00 ζ,s = 1 6 ζs 3 Η ζs + 1 6 1+3 s 2 2 s 3 ζ 3 + 1 2 s2 s 2 + s 3 ζ 2 ; G 00 0,s =0, G 10 0,s =0, G 00 1,s =0, G 10 1,s =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiaadEeadaWgaaWcbaGaaGimaiaaykW7ca aIWaaabeaakmaabmaabaGaeqOTdONaaiilaiaadohaaiaawIcacaGL PaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaI2aaaamaabmaabaGaeq OTdONaeyOeI0Iaam4CaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4m aaaakiabfE5ainaabmaabaGaeqOTdONaeyOeI0Iaam4CaaGaayjkai aawMcaaiabgUcaRmaalaaabaGaaGymaaqaaiaaiAdaaaWaaeWaaeaa cqGHsislcaaIXaGaey4kaSIaaG4maiaadohadaahaaWcbeqaaiaaik daaaGccqGHsislcaaIYaGaam4CamaaCaaaleqabaGaaG4maaaaaOGa ayjkaiaawMcaaiabeA7a6naaCaaaleqabaGaaG4maaaakiabgUcaRm aalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaacaWGZbGaeyOeI0Ia aGOmaiaadohadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGZbWaaW baaSqabeaacaaIZaaaaaGccaGLOaGaayzkaaGaeqOTdO3aaWbaaSqa beaacaaIYaaaaOGaai4oaaqaaiaaykW7caaMc8Uaam4ramaaBaaale aacaaIWaGaaGPaVlaaicdaaeqaaOWaaeWaaeaacaaIWaGaaiilaiaa dohaaiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiilaiaaykW7caaMc8 UaaGPaVlaaykW7caWGhbWaaSbaaSqaaiaaigdacaaMc8UaaGimaaqa baGcdaqadaqaaiaaicdacaGGSaGaam4CaaGaayjkaiaawMcaaiabg2 da9iaaicdacaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaadEeadaWg aaWcbaGaaGimaiaaykW7caaIWaaabeaakmaabmaabaGaaGymaiaacY cacaWGZbaacaGLOaGaayzkaaGaeyypa0JaaGimaiaacYcacaaMc8Ua aGPaVlaaykW7caaMc8Uaam4ramaaBaaaleaacaaIXaGaaGPaVlaaic daaeqaaOWaaeWaaeaacaaIXaGaaiilaiaadohaaiaawIcacaGLPaaa cqGH9aqpcaaIWaGaaiilaaaaaa@A67F@

где Η ζs MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHxoasdaqadaqaaiabeA7a6jabgkHiTiaado haaiaawIcacaGLPaaaaaa@37A2@ – функция Хевисайда.

Упрощая выражение (6.1), получаем:

  ξ ζ,τ +2 η V ξ ˙ ζ,τ ΩRξ ζ,τ = = 0 1 G 00 ζ,s 2 η e ξ ˙ s,τ ξ ¨ s,τ ds 0 1 G 02 ζ,s α g NL ξ s,τ +2 η VV f NL ξ ˙ s,τ ΩR ξ s,τ ds ; f NL = ξ ˙ T ξ ˙ 2Ω ξ ˙ T R ξ + Ω 2 ξ T ξ ; g NL = ξ T ξ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaGGabiab=57a4naabmaabaGaeqOTdONaai ilaiabes8a0bGaayjkaiaawMcaaiabgUcaRiaaikdacqaH3oaAdaWg aaWcbaGaamOvaaqabaGcdaqadaqaaiqb=57a4zaacaWaaeWaaeaacq aH2oGEcaGGSaGaeqiXdqhacaGLOaGaayzkaaGaaGPaVlabgkHiTiaa ykW7cqqHPoWvcaaMc8ocbeGaa4NuaiaaykW7caaMc8Uae8NVdG3aae WaaeaacqaH2oGEcaGGSaGaeqiXdqhacaGLOaGaayzkaaaacaGLOaGa ayzkaaGaeyypa0dabaGaeyypa0Zaa8qCaeaacaWGhbWaaSbaaSqaai aaicdacaaMc8UaaGimaaqabaGcdaqadaqaaiabeA7a6jaacYcacaWG ZbaacaGLOaGaayzkaaWaamWaaeaacqGHsislcaaMc8UaaGOmaiaayk W7cqaH3oaAdaWgaaWcbaGaamyzaaqabaGccaaMc8Uaf8NVdGNbaiaa daqadaqaaiaadohacaGGSaGaeqiXdqhacaGLOaGaayzkaaGaeyOeI0 IaaGPaVlqb=57a4zaadaWaaeWaaeaacaWGZbGaaiilaiabes8a0bGa ayjkaiaawMcaaaGaay5waiaaw2faaiaadsgacaWGZbaaleaacaaIWa aabaGaaGymaaqdcqGHRiI8aOGaeyOeI0cabaGaeyOeI0Yaa8qCaeaa caWGhbWaaSbaaSqaaiaaicdacaaMc8UaaGOmaaqabaGcdaqadaqaai abeA7a6jaacYcacaWGZbaacaGLOaGaayzkaaWaamWaaeaacqaHXoqy caaMc8Uaam4zamaaBaaaleaacaWGobGaaGPaVlaadYeaaeqaaOGaaG PaVlqb=57a4zaagaWaaeWaaeaacaWGZbGaaiilaiabes8a0bGaayjk aiaawMcaaiaaykW7cqGHRaWkcaaMc8UaaGOmaiaaykW7cqaH3oaAda WgaaWcbaGaamOvaiaaykW7caWGwbaabeaakiaaykW7caWGMbWaaSba aSqaaiaad6eacaWGmbaabeaakiaaykW7daqadaqaaiqb=57a4zaacy aagaWaaeWaaeaacaWGZbGaaiilaiabes8a0bGaayjkaiaawMcaaiaa ykW7cqGHsislcaaMc8UaeuyQdCLaaGPaVlaa+jfacaaMc8UaaGPaVl qb=57a4zaagaWaaeWaaeaacaWGZbGaaiilaiabes8a0bGaayjkaiaa wMcaaaGaayjkaiaawMcaaaGaay5waiaaw2faaiaadsgacaWGZbaale aacaaIWaaabaGaaGymaaqdcqGHRiI8aOGaai4oaaqaaiaadAgadaWg aaWcbaGaamOtaiaadYeaaeqaaOGaeyypa0ZaaeWaaeaadaqadaqaai qb=57a4zaacyaagaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaMc8Ua aGPaVlaadsfacaaMc8oaaOGaaGPaVlqb=57a4zaacyaagaGaaGPaVl abgkHiTiaaykW7caaIYaGaaGPaVlabfM6axjaaykW7daqadaqaaiqb =57a4zaacyaagaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaMc8UaaG PaVlaadsfaaaGccaaMc8Uaa4NuaiaaykW7caaMc8Uaf8NVdGNbayaa caaMc8Uaey4kaSIaaGPaVlabfM6axnaaCaaaleqabaGaaGOmaaaaki aaykW7daqadaqaaiqb=57a4zaagaaacaGLOaGaayzkaaWaaWbaaSqa beaacaaMc8UaaGPaVlaadsfaaaGccaaMc8Uaf8NVdGNbayaaaiaawI cacaGLPaaacaGG7aaabqai=laadEgadaWgaaWcbaGaamOtaiaadYea aeqaaOGaeyypa0ZaaeWaaeaacuWF+oaEgaGbaaGaayjkaiaawMcaam aaCaaaleqabaGaaGPaVlaaykW7caWGubaaaOGaaGPaVlqb=57a4zaa gaGaaiOlaaaaaa@208A@                (6.2)

Для записи уравнения (6.2) в матричной форме входящие в него интегралы вычислим приближенно по методу трапеций, разбивая вал на m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGTbaaaa@31FC@  одинаковых элементов с длиной h=1/m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGObGaeyypa0ZaaSGbaeaacaaIXaaabaGaam yBaaaaaaa@34C0@  и координатами узлов ζ i = i1 h;i= 1,m+1 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH2oGEdaWgaaWcbaGaamyAaaqabaGccaaMc8 Uaeyypa0JaaGPaVpaabmaabaGaamyAaiaaykW7cqGHsislcaaMc8Ua aGymaaGaayjkaiaawMcaaiaaykW7caWGObGaaGPaVlaacUdacaaMc8 UaaGPaVlaadMgacaaMc8Uaeyypa0JaaGPaVpaanaaabaGaaGymaiaa cYcacaWGTbGaaGPaVlabgUcaRiaaykW7caaIXaaaaaaa@533F@ . Значения интеграла в каждом j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGQbaaaa@31F9@  -ом узле принимается равным

0 1 G ζ j ,s x τ,s ds h 2 G j 1 x 1 + G j m+1 x m+1 +h k=2 k=m G j k x k , G j k G ζ j , s k , x k x τ, s k ,j,k= 1,m+1 ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaamaapehabaGaam4ramaabmaabaGaeqOTdO 3aaSbaaSqaaiaadQgaaeqaaOGaaiilaiaadohaaiaawIcacaGLPaaa caaMc8EefqvATv2CG4uz3bIuV1wyUbaceeGaa8hEamaabmaabaGaeq iXdqNaaiilaiaaykW7caWGZbaacaGLOaGaayzkaaaaleaacaaIWaaa baGaaGymaaqdcqGHRiI8aOGaaGPaVlaadsgacaaMc8Uaam4Caiaayk W7cqGHijYUcaaMc8+aaSaaaeaacaWGObaabaGaaGOmaaaadaWadaqa aiaadEeadaWgaaWcbaWaaeWaaeaacaWGQbaacaGLOaGaayzkaaGaaG PaVpaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaGccaaMc8Uaa8hE amaaBaaaleaadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaOGaaG PaVlabgUcaRiaaykW7caWGhbWaaSbaaSqaamaabmaabaGaamOAaaGa ayjkaiaawMcaaiaaykW7daqadaqaaiaad2gacaaMc8Uaey4kaSIaaG PaVlaaigdaaiaawIcacaGLPaaaaeqaaOGaaGPaVlaa=HhadaWgaaWc baWaaeWaaeaacaWGTbGaaGPaVlabgUcaRiaaykW7caaIXaaacaGLOa GaayzkaaaabeaaaOGaay5waiaaw2faaiaaykW7cqGHRaWkcaaMc8Ua amiAaiaaykW7daaeWbqaaiaadEeadaWgaaWcbaWaaeWaaeaacaWGQb aacaGLOaGaayzkaaGaaGPaVpaabmaabaGaam4AaaGaayjkaiaawMca aaqabaGccaaMc8Uaa8hEamaaBaaaleaadaqadaqaaiaadUgaaiaawI cacaGLPaaaaeqaaaqaaiaadUgacaaMc8Uaeyypa0JaaGPaVlaaikda aeaacaWGRbGaaGPaVlabg2da9iaaykW7caWGTbaaniabggHiLdGcca GGSaaabaGaam4ramaaBaaaleaadaqadaqaaiaadQgaaiaawIcacaGL PaaacaaMc8+aaeWaaeaacaWGRbaacaGLOaGaayzkaaaabeaakiaayk W7cqWIqjIqcaaMc8Uaam4ramaabmaabaGaeqOTdO3aaSbaaSqaaiaa dQgaaeqaaOGaaiilaiaadohadaWgaaWcbaGaam4AaaqabaaakiaawI cacaGLPaaacaGGSaGaaGPaVlaaykW7caWF4bWaaSbaaSqaamaabmaa baGaam4AaaGaayjkaiaawMcaaaqabaGccaaMc8UaeSiuIiKaaGPaVl aa=Hhadaqadaqaaiabes8a0jaacYcacaaMc8Uaam4CamaaBaaaleaa caWGRbaabeaaaOGaayjkaiaawMcaaiaacYcacaaMc8UaaGPaVlaadQ gacaGGSaGaaGPaVlaadUgacaaMc8Uaeyypa0JaaGPaVpaanaaabaGa aGymaiaacYcacaaMc8UaamyBaiaaykW7cqGHRaWkcaaMc8UaaGymaa aacaaMc8UaaiOlaaaaaa@DF26@

Для того чтобы система не была переопределена, краевые узлы исключаются из рассмотрения, поскольку перемещения в них заранее известны – они нулевые. Таким образом, размерность задачи станет равной 2 m1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaaIYaWaaeWaaeaacaWGTbGaeyOeI0IaaGymaa GaayjkaiaawMcaaaaa@35E9@ .

Введем матрицу функций Грина G h kl MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWFhbWaaW baaSqabeaacaWGObaaaOWaaSbaaSqaaiaadUgacaaMc8UaamiBaaqa baaaaa@3C1A@ , вектор узловых перемещений x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWH4baaaa@320B@  единичные матрицы E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWFfbaaaa@375C@  и I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWFjbaaaa@3760@  размерностью R 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGsbWaaWbaaSqabeaacaaIYaaaaaaa@32CA@  и R m1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGsbWaaWbaaSqabeaacaWGTbGaeyOeI0IaaG ymaaaaaaa@34A8@  соответственно:

  G h kl m1 × m1 =h G kl ζ 2 , s 2 G kl ζ 2 , s 3 G kl ζ 2 , s m G kl ζ 3 , s 2 G kl ζ m , s 2 G kl ζ m , s m , x 2 m1 ×1 = ξ ζ 2 ,τ ξ ζ 3 ,τ ξ ζ m ,τ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaamaazaaabaqefqvATv2CG4uz3bIuV1wyUb aceeGaa83ramaaCaaaleqabaGaamiAaaaakmaaBaaaleaacaWGRbGa aGPaVlaadYgaaeqaaaqaamaabmaabaGaamyBaiabgkHiTiaaigdaai aawIcacaGLPaaacqGHxdaTdaqadaqaaiaad2gacqGHsislcaaIXaaa caGLOaGaayzkaaaakiaawYa7aiabg2da9iaadIgadaWadaqaauaabe qaeqaaaaaabaGaam4ramaaBaaaleaacaWGRbGaaGPaVlaadYgaaeqa aOWaaeWaaeaacqaH2oGEdaWgaaWcbaGaaGOmaaqabaGccaGGSaGaam 4CamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaqaaiaadEea daWgaaWcbaGaam4AaiaaykW7caWGSbaabeaakmaabmaabaGaeqOTdO 3aaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadohadaWgaaWcbaGaaG4m aaqabaaakiaawIcacaGLPaaaaeaacqWIVlctaeaacaWGhbWaaSbaaS qaaiaadUgacaaMc8UaamiBaaqabaGcdaqadaqaaiabeA7a6naaBaaa leaacaaIYaaabeaakiaacYcacaWGZbWaaSbaaSqaaiaad2gaaeqaaa GccaGLOaGaayzkaaaabaGaam4ramaaBaaaleaacaWGRbGaaGPaVlaa dYgaaeqaaOWaaeWaaeaacqaH2oGEdaWgaaWcbaGaaG4maaqabaGcca GGSaGaam4CamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaqa aiablgVipbqaaiablgVipbqaaiabl6Uinbqaaiabl6Uinbqaaiablg VipbqaaiablgVipbqaaiabl6UinbqaaiaadEeadaWgaaWcbaGaam4A aiaaykW7caWGSbaabeaakmaabmaabaGaeqOTdO3aaSbaaSqaaiaad2 gaaeqaaOGaaiilaiaadohadaWgaaWcbaGaaGOmaaqabaaakiaawIca caGLPaaaaeaacqWIVlctaeaacqWIVlctaeaacaWGhbWaaSbaaSqaai aadUgacaaMc8UaamiBaaqabaGcdaqadaqaaiabeA7a6naaBaaaleaa caWGTbaabeaakiaacYcacaWGZbWaaSbaaSqaaiaad2gaaeqaaaGcca GLOaGaayzkaaaaaaGaay5waiaaw2faaiaacYcaaeaadaWfqaqaaiaa hIhaaSqaaiaaikdadaqadaqaaiaad2gacqGHsislcaaIXaaacaGLOa GaayzkaaGaey41aqRaaGymaaqabaqeduuDJXwAKbYu51MyVXgaiuqa kiab+1da9maacmaabaqbaeqabqqaaaaabaGaeqOVdG3aaeWaaeaacq aH2oGEdaWgaaWcbaGaaGOmaaqabaGccaGGSaGaeqiXdqhacaGLOaGa ayzkaaaabaGaeqOVdG3aaeWaaeaacqaH2oGEdaWgaaWcbaGaaG4maa qabaGccaGGSaGaeqiXdqhacaGLOaGaayzkaaaabaGaeSO7I0eabaGa eqOVdG3aaeWaaeaacqaH2oGEdaWgaaWcbaGaamyBaaqabaGccaGGSa GaeqiXdqhacaGLOaGaayzkaaaaaaGaay5Eaiaaw2haaiaaykW7caGG Uaaaaaa@D39A@

Квадратные матрицы G h kl MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeabG8FefqvATv2CG4uz3bIuV1wyUbaceeGaa83ram aaCaaaleqabaGaamiAaaaakmaaBaaaleaacaWGRbGaaGPaVlaadYga aeqaaaaa@3D3D@ , I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeabG8FefqvATv2CG4uz3bIuV1wyUbaceeGaa8xsaa aa@3883@ , D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeabG8FefqvATv2CG4uz3bIuV1wyUbaceeGaa8hraa aa@387E@  имеют размерность, равную m1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeabG8=aaeWaaeaacaWGTbGaeyOeI0IaaGymaaGaay jkaiaawMcaaaaa@3650@ , т.е. количеству узлов. Поскольку в каждом узле мы имеем две равнозначные степени свободы – перемещения вдоль осей x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeabG8VaamiEaaaa@332A@  и y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeabG8VaamyEaaaa@332B@  для матричной записи, каж­дая компонента этих матриц должна быть умножена на единичную матрицу E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeabG8FefqvATv2CG4uz3bIuV1wyUbaceeGaa8xraa aa@387F@ . Для этой операции воспользуемся произведением Кронекера, которое обозначим как AB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeabG8FefqvATv2CG4uz3bIuV1wyUbaceeGaa8xqai abgEPielaa=jeaaaa@3B47@ .

В итоге уравнение в матричной форме принимает следующий вид:

  A 2 x ¨ + A 1 x ˙ + A 0 x=F, A 2 = G h 00 E, A 1 =2 η V IE +2 η e G h 00 E , A 0 =I E2 η V ΩR , F=2 η VV G h 02 f E DE x ˙ +Ω DR x α G h 02 g E DE x . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiaaxMaaruavP1wzZbItLDhis9wBH5gaiq qacaWFbbWaaSbaaSqaaiaaikdaaeqaaOGaaGPaVlqa=HhagaWaaiab gUcaRiaa=feadaWgaaWcbaGaaGymaaqabaGccaaMc8Uab8hEayaaca Gaey4kaSIaaGjbVlaa=feadaWgaaWcbaGaaGimaaqabaGccaaMc8Ua a8hEaiabg2da9iaa=zeacaGGSaaabaGaa8xqamaaBaaaleaacaaIYa aabeaakiabg2da9iaa=DeadaahaaWcbeqaaiaadIgaaaGcdaWgaaWc baGaaGimaiaaykW7caaIWaaabeaakiabgEPielaa=veacaGGSaaaba Gaa8xqamaaBaaaleaacaaIXaaabeaakiabg2da9iaaikdacaaMc8Ua eq4TdG2aaSbaaSqaaiaadAfaaeqaaOGaaGPaVpaabmaabaGaa8xsai abgEPielaa=veaaiaawIcacaGLPaaacqGHRaWkcaaIYaGaaGPaVlab eE7aOnaaBaaaleaacaWGLbaabeaakmaabmaabaGaa83ramaaCaaale qabaGaamiAaaaakmaaBaaaleaacaaIWaGaaGPaVlaaicdaaeqaaOGa ey4LIqSaa8xraaGaayjkaiaawMcaaiaacYcaaeaacaWFbbWaaSbaaS qaaiaaicdaaeqaaOGaeyypa0JaaCysaiabgEPiepaabmaabaGaa8xr aiabgkHiTiaaikdacaaMc8Uaeq4TdG2aaSbaaSqaaiaadAfaaeqaaO GaaGPaVlabfM6axjaaykW7caWFsbaacaGLOaGaayzkaaGaaiilaaqa aiaa=zeacqGH9aqpcaaIYaGaeq4TdG2aaSbaaSqaaiaadAfacaWGwb aabeaakiaaykW7daWadaqaamaabmaabaGaa83ramaaCaaaleqabaGa amiAaaaakmaaBaaaleaacaaIWaGaaGPaVlaaikdaaeqaaaGccaGLOa GaayzkaaWaaSbaaSqaaiaadAgaaeqaaOGaey4LIqSaa8xraaGaay5w aiaaw2faamaadmaabaGaeyOeI0YaaeWaaeaacaWFebGaey4LIqSaa8 xraaGaayjkaiaawMcaaiqa=HhagaGaaeXafv3ySLgzGmvETj2BSbac faGae43kaSIaeuyQdC1aaeWaaeaacaWFebGaey4LIqSaa8NuaaGaay jkaiaawMcaaiaa=HhaaiaawUfacaGLDbaacqGHsislaeaacqGHsisl caaMc8UaeqySde2aamWaaeaadaqadaqaaiaa=DeadaahaaWcbeqaai aadIgaaaGcdaWgaaWcbaGaaGimaiaaykW7caaIYaaabeaaaOGaayjk aiaawMcaamaaBaaaleaacaWGNbaabeaakiabgEPielaa=veaaiaawU facaGLDbaadaWadaqaamaabmaabaGaa8hraiabgEPielaa=veaaiaa wIcacaGLPaaacaWF4baacaGLBbGaayzxaaGaaiOlaaaaaa@CCC2@                                    (6.3)

где G h 02 f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaerbuLwBLnhiov2DGi1BTfMBaGabbi aa=DeadaahaaWcbeqaaiaadIgaaaGcdaWgaaWcbaGaaGimaiaaykW7 caaIYaaabeaaaOGaayjkaiaawMcaamaaBaaaleaacaWGMbaabeaaaa a@3E59@  и G h 02 g MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaerbuLwBLnhiov2DGi1BTfMBaGabbi aa=DeadaahaaWcbeqaaiaadIgaaaGcdaWgaaWcbaGaaGimaiaaykW7 caaIYaaabeaaaOGaayjkaiaawMcaamaaBaaaleaacaWGNbaabeaaaa a@3E5A@ – матрицы, полученные умножением столбцов матрицы Грина G h 02 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWFhbWaaW baaSqabeaacaWGObaaaOWaaSbaaSqaaiaaicdacaaMc8UaaGOmaaqa baaaaa@3BAF@  на соответствующие значения f NL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGMbWaaSbaaSqaaiaad6eacaWGmbaabeaaaa a@33C5@  и g NL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGNbWaaSbaaSqaaiaad6eacaWGmbaabeaaaa a@33C6@ .

Полная нелинейная система уравнений (6.3) зависит от шести параметров m, η e , η V ,Ω, η VV ,α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaGadaqaaiaad2gacaGGSaGaaGPaVlaaykW7cq aH3oaAdaWgaaWcbaGaamyzaaqabaGccaGGSaGaaGPaVlaaykW7cqaH 3oaAdaWgaaWcbaGaamOvaaqabaGccaGGSaGaaGPaVlaaykW7cqqHPo WvcaGGSaGaaGPaVlaaykW7cqaH3oaAdaWgaaWcbaGaamOvaiaadAfa aeqaaOGaaiilaiaaykW7caaMc8UaeqySdegacaGL7bGaayzFaaaaaa@5359@ , при этом линейная часть – от четырех параметров m, η e , η V ,Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaGadaqaaiaad2gacaGGSaGaaGPaVlabeE7aOn aaBaaaleaacaWGLbaabeaakiaacYcacaaMc8Uaeq4TdG2aaSbaaSqa aiaadAfaaeqaaOGaaiilaiabfM6axbGaay5Eaiaaw2haaaaa@406A@ .

Для численного решения сведем уравнение (6.3) к форме Коши:

Z ˙ =AZ+f; Z= x x ˙ ,A= 0 E A 2 1 A 0 A 2 1 A 1 ,f= 0 A 2 1 F . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7ruavP1wzZbItLDhis9wBH5gaiqqace WFAbGbaiaacaaMc8Uaeyypa0JaaGPaVlaa=feacaaMc8Uaa8Nwaiaa ykW7cqGHRaWkcaaMc8Uaa8NzaiaacUdaaeaacaWFAbGaeyypa0Zaai WaaeaafaqabeGabaaabaGaa8hEaaqaaiqa=HhagaGaaaaaaiaawUha caGL9baacaGGSaGaaGPaVlaaykW7caWFbbGaaGPaVlabg2da9iaayk W7caaMc8+aamWaaeaafaqabeGacaaabaGaaCimaaqaaiaa=veaaeaa cqGHsislcaWFbbWaaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabeaacq GHsislcaaIXaaaaOGaaGPaVlaa=feadaWgaaWcbaGaaGimaaqabaaa keaacqGHsislcaWFbbWaaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabe aacqGHsislcaaIXaaaaOGaaGPaVlaa=feadaWgaaWcbaGaaGymaaqa baaaaaGccaGLBbGaayzxaaGaaiilaiaaykW7caaMc8Uaa8Nzaiabg2 da9maacmaabaqbaeqabiqaaaqaaiaahcdaaeaacaWFbbWaaSbaaSqa aiaaikdaaeqaaOWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGPaVl aa=zeaaaaacaGL7bGaayzFaaGaaiOlaaaaaa@C284@

7. Определение критической скорости. Линейная динамическая система описывается следующим уравнением:

  A 2 x ¨ + A 1 x ˙ + A 0 x=0,x R 2 m1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWFbbWaaS baaSqaaiaaikdaaeqaaOGaaGPaVlqa=HhagaWaaiaaykW7cqGHRaWk caaMc8Uaa8xqamaaBaaaleaacaaIXaaabeaakiaaykW7ceWF4bGbai aacaaMc8Uaey4kaSIaaGPaVlaa=feadaWgaaWcbaGaaGimaaqabaGc caaMc8Uaa8hEaiaaykW7cqGH9aqpcaaMc8UaaCimaiaacYcacaaMc8 UaaGPaVlaa=HhacaaMc8UaeyicI4SaaGPaVlaadkfadaahaaWcbeqa aiaaikdadaqadaqaaiaad2gacqGHsislcaaIXaaacaGLOaGaayzkaa aaaaaa@5F4F@          (7.1)

Собственные числа λ k ,k= 1,2,,4 m1 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaGGSa GaaGPaVlaaykW7caaMc8Uaam4AaiaaykW7cqGH9aqpcaaMc8+aa0aa aeaacaaIXaGaaiilaiaaykW7caaIYaGaaiilaiaaykW7cqWIMaYsca GGSaGaaGPaVlaaisdacaaMc8+aaeWaaeaacaWGTbGaeyOeI0IaaGym aaGaayjkaiaawMcaaaaaaaa@4E08@  системы (7.1) являются корнями характеристического уравнения

системы стремятся к нулю. При закритических скоростях вращения любые начальные возмущения приводят к неограниченному росту амплитуд колебаний вала.

9. Поведение нелинейной динамической системы. Рассмотрим влияние каж­дой из нелинейностей η VV ,α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaiabeE7aOnaaBaaaleaacaWGwbGaam OvaaqabaGccaGGSaGaaGPaVlabeg7aHbGaayjkaiaawMcaaaaa@3A05@  модели внутреннего демпфирования Кельвина–Фойхта на амплитуды колебаний вала при его вращении с закритической скоростью Ω=33> Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvcqGH9aqpcaaIZaGaaG4maiabg6da+i abfM6axnaaBaaaleaacaqGJbGaaeOCaiaabMgacaqG0baabeaaaaa@3B98@ . В качестве начального возмущения примем перемещения шестого (срединного) узла ξ x ζ 6 ,0 = ξ y ζ 6 ,0 =0.2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH+oaEdaWgaaWcbaGaamiEaaqabaGcdaqada qaaiabeA7a6naaBaaaleaacaaI2aaabeaakiaacYcacaaIWaaacaGL OaGaayzkaaGaeyypa0JaeqOVdG3aaSbaaSqaaiaadMhaaeqaaOWaae WaaeaacqaH2oGEdaWgaaWcbaGaaGOnaaqabaGccaGGSaGaaGimaaGa ayjkaiaawMcaaiabg2da9iaaicdacaGGUaGaaGOmaaaa@4677@ . На рис. 3,а показаны перемещения шестого (срединного) узла при значении коэффициента η VV = 10 5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaiaadAfaaeqaaO Gaeyypa0JaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiwdaaaaa aa@38F6@  и нулевом коэффициенте нелинейности упругих сил ( α=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHXoqycqGH9aqpcaaIWaaaaa@3469@  ). В этом случае с увеличением числа оборотов вала Ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHDoGtaaa@3283@  амплитуды колебаний неограниченно возрастают, стремясь в бесконечность. При учете обеих нелинейностей ( η VV = 10 5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaiaadAfaaeqaaO Gaeyypa0JaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiwdaaaaa aa@38F6@ , α=0.015 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaicdaca aIXaGaaGynaaaa@374F@  ) амплитуда колебаний сначала возрастает и, затем, после, примерно, двадцати оборотов амплитуда устанавливается на постоянное значение, достигнув пятикратного увеличения по сравнению с начальным возмущением (рис. 3,b). Наличие только нелинейности в силах упругости, в данном случае – кубической ( α=0.015 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaicdaca aIXaGaaGynaaaa@374F@ , η VV =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaiaadAfaaeqaaO Gaeyypa0JaaGimaaaa@3662@  ), приводит к ограниченным устойчивым периодическим решениям (рис. 3,c).

 

Рис. 3. Перемещения срединного узла при закритической скорости при m=12, ηe=0.02, ηV=104: (a) ηVV=105, α=0; (b) ηVV=105, α=0.015; (c) ηVV=0, α=0.015.

 

10. Явление гистерезиса угловой скорости вращения при малом значении времени релаксации неупругих деформаций η V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiqacqWF3oaAdaWgaaWcbaqefqvATv2CG4uz3b IuV1wyUbacemGaa4Nvaaqabaaaaa@394C@ . Как было показано в предыдущем пункте, наличие кубической нелинейности в силах упругости приводит к появлению дополнительного нетривиального устойчивого решения в закритической области. На рис. 4 приведена бифуркационная диаграмма значений установившихся амплитуд перемещений центрального узла ξ x ζ 6 ,τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH+oaEdaWgaaWcbaGaamiEaaqabaGcdaqada qaaiabeA7a6naaBaaaleaacaaI2aaabeaakiaacYcacqaHepaDaiaa wIcacaGLPaaaaaa@3AB1@  от угловой скорости Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvaaa@3298@ , которая получена методом установления при следующих значениях параметров: m=12 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGTbGaeyypa0JaaGymaiaaikdaaaa@3479@ , η e =0.02 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamyzaaqabaGccqGH9a qpcaaIWaGaaiOlaiaaicdacaaIYaaaaa@37BE@ , η V = 10 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaaqabaGccqGH9a qpcaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGinaaaaaaa@381A@ , η VV = 10 5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaiaadAfaaeqaaO Gaeyypa0JaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiwdaaaaa aa@38F6@ , α=0.015 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaicdaca aIXaGaaGynaaaa@374F@ . Видно, что в докритической области, в диапазоне скоростей Ω <Ω< Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaeyOeI0cabeaakiabgY da8iabfM6axjabgYda8iabfM6axnaaBaaaleaacaqGJbGaaeOCaiaa bMgacaqG0baabeaaaaa@3CC9@  существует два устойчивых режима: устойчивое нулевое решение и устойчивое периодическое решение. Эти решения имеют разные притягивающие множества. Можно заключить, что наблюдается субкритическая бифуркация (точка B на рис. 4), неустойчивая ветвь показана схематично красной штриховой линией. Точка А является предельной точкой перехода с верхней устойчивой ветви на нижнюю устойчивую. При угловой скорости выше критической Ω> Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvcqGH+aGpcqqHPoWvdaWgaaWcbaGaae 4yaiaabkhacaqGPbGaaeiDaaqabaaaaa@3918@  существует только одно устойчивое периодическое решение, продолжающее верхнюю ветвь на интервале Ω <Ω< Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaeyOeI0cabeaakiabgY da8iabfM6axjabgYda8iabfM6axnaaBaaaleaacaqGJbGaaeOCaiaa bMgacaqG0baabeaaaaa@3CC9@ .

 

Рис. 4. Бифуркационная диаграмма вдоль верхней периодической ветви, А – предельная точка, B – субкритическая бифуркация ( m=12, ηe=0.02, ηV=104, ηVV=105, α=0.015).

 

11. Характер прецессии на устойчивой ветви периодических решений. Для определения характера прецессии используется понятие о коэффициенте мгновенной прецессии Λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHBoataaa@327F@ , который определяется через скорость изменения полярного угла срединного узла α τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHXoqydaqadaqaaiabes8a0bGaayjkaiaawM caaaaa@35F7@ , показанного на рис. 5:

α ˙ τ = ξ ˙ y ζ 6 ,τ ξ x ζ 6 ,τ ξ ˙ x ζ 6 ,τ ξ y ζ 6 ,τ ξ x 2 ζ 6 ,τ + ξ y 2 ζ 6 ,τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuaHXoqygaGaamaabmaabaGaeqiXdqhacaGLOa GaayzkaaGaaGPaVlabg2da9iaaykW7daWcaaqaaiqbe67a4zaacaWa aSbaaSqaaiaadMhacaaMc8oabeaakmaabmaabaGaeqOTdO3aaSbaaS qaaiaaiAdaaeqaaOGaaiilaiabes8a0bGaayjkaiaawMcaaiabe67a 4naaBaaaleaacaWG4baabeaakmaabmaabaGaeqOTdO3aaSbaaSqaai aaiAdaaeqaaOGaaiilaiabes8a0bGaayjkaiaawMcaaiaaykW7cqGH sislcaaMc8UafqOVdGNbaiaadaWgaaWcbaGaamiEaaqabaGcdaqada qaaiabeA7a6naaBaaaleaacaaI2aaabeaakiaacYcacqaHepaDaiaa wIcacaGLPaaacaaMc8UaeqOVdG3aaSbaaSqaaiaadMhaaeqaaOWaae WaaeaacqaH2oGEdaWgaaWcbaGaaGOnaaqabaGccaGGSaGaeqiXdqha caGLOaGaayzkaaaabaGaeqOVdG3aaSbaaSqaaiaadIhaaeqaaOWaaW baaSqabeaacaaIYaaaaOWaaeWaaeaacqaH2oGEdaWgaaWcbaGaaGOn aaqabaGccaGGSaGaeqiXdqhacaGLOaGaayzkaaGaaGPaVlabgUcaRi aaykW7cqaH+oaEdaWgaaWcbaGaamyEaaqabaGcdaahaaWcbeqaaiaa ikdaaaGcdaqadaqaaiabeA7a6naaBaaaleaacaaI2aaabeaakiaacY cacqaHepaDaiaawIcacaGLPaaaaaaaaa@8122@ .

 

 

Рис. 5. Прецессия сечения стержня, соответствующего срединному узлу.

 

Тогда коэффициент мгновенной прецессии Λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHBoataaa@327F@  и его среднее значение Λ ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuqHBoatgaqeaaaa@3297@  определяются следующим образом:

Λ= α ˙ Ω , Λ ¯ = 1 τ 2 τ 1 τ 1 τ 2 Λ s ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHBoatcaaMc8Uaeyypa0JaaGPaVpaalaaaba GafqySdeMbaiaaaeaacqqHPoWvaaGaaiilaiaaykW7caaMc8UaaGPa VlqbfU5amzaaraGaaGPaVlabg2da9iaaykW7daWcaaqaaiaaigdaae aacqaHepaDdaWgaaWcbaGaaGOmaaqabaGccaaMc8UaeyOeI0IaaGPa Vlabes8a0naaBaaaleaacaaIXaaabeaaaaGccaaMc8+aa8qCaeaacq qHBoatdaqadaqaaiaadohaaiaawIcacaGLPaaacaaMc8UaaGPaVlaa dsgacaWGZbaaleaacqaHepaDdaWgaaadbaGaaGymaaqabaaaleaacq aHepaDdaWgaaadbaGaaGOmaaqabaaaniabgUIiYdaaaa@615D@ .

Можно различить следующие случаи: Λ ¯ >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuqHBoatgaqeaiaaykW7cqGH+aGpqqa6daaaaa GuLrgapeGaaGPaV=aacaaIWaaaaa@39A8@ – прямая прецессия, Λ ¯ <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuqHBoatgaqeaiaaykW7cqGH8aapcaaMc8UaaG imaaaa@376B@ – обратная прецессия, Λ ¯ =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuqHBoatgaqeaiabg2da9iaaigdaaaa@3458@  и Λ ¯ =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuqHBoatgaqeaiabg2da9iabgkHiTiaaigdaaa a@3545@ – прямая и обратная синхронная прецессии соответственно.

На рис. 6 показано распределение среднего коэффициента прецессии Λ ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuqHBoatgaqeaaaa@3297@  вдоль верхней устойчивой периодической ветви, в интервале Ω> Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvcaaMc8UaeyOpa4JaaGPaVlabfM6axn aaBaaaleaacqGHsislaeqaaaaa@395D@  (см. рис. 4) реализуется прямая несинхронная прецессия 0< Λ ¯ <1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaaIWaGaaGPaVlabgYda8iaaykW7cuqHBoatga qeaiaaykW7cqGH8aapcaaMc8UaaGymaaaa@3C40@ , причем скорость вращения вала несколько больше скорости прецессии.

 

Рис. 6. Распределение среднего значения коэффициента прецессия вдоль верхней устойчивой ветви ( m=12, ηe=0.02, ηV=104, ηVV=105, α=0.015).

 

На рис. 7 показаны характерные для верхней ветви траектории узлов коллокации с формой изогнутой оси.

 

Рис. 7. Траектории узлов коллокации при установившемся движении (черные линии) и формы изо-гнутой оси (красные линии) ( m=12, ηe=0.02, ηV=104, ηVV=105, α=0.015, Ω=32).

 

12. Характер прецессии на устойчивой ветви периодических решений. На рис. 8а показаны значения Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaeyOeI0cabeaaaaa@33B1@  и Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaae4yaiaabkhacaqGPb GaaeiDaaqabaaaaa@3682@  в зависимости от коэффициента внутреннего линейного демпфирования η V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaaqabaaaaa@33BD@ , из которого видно, что при малых значениях η V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaaqabaaaaa@33BD@  в области Ω <Ω< Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaeyOeI0cabeaakiabgY da8iabfM6axjabgYda8iabfM6axnaaBaaaleaacaqGJbGaaeOCaiaa bMgacaqG0baabeaaaaa@3CC9@  присутствует множественность решений (рис. 8,c), что соответствует субкритической бифуркации. При увеличении коэффициента η V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaaqabaaaaa@33BD@  значение Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaeyOeI0cabeaaaaa@33B1@  постепенно сливается с Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaae4yaiaabkhacaqGPb GaaeiDaaqabaaaaa@3682@ . При некотором значении η V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaaqabaaaaa@33BD@  складка исчезает: Ω= Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvcqGH9aqpcqqHPoWvdaWgaaWcbaGaae 4yaiaabkhacaqGPbGaaeiDaaqabaaaaa@3916@ – суперкритическая бифуркация (рис. 8,b). Появляется мягкое развитие амплитуд устойчивых периодических (автоколебательных) движений.

 

Рис. 8. Зависимость Ω и Ωcrit от коэффициента ηV (а); распределение амплитуд перемещений срединного узла при субкритической (b) и суперкритической (c) бифуркациях ( m=12, ηe=0.02, ηVV=105, α=0.015).

 

13. Заключение. В работе показано влияние кубического члена в модели Кельвина–Фойхта для внутреннего демпфирования и кубического члена в законе упругости на динамику вала в докритической и закритической областях скоростей вращения. Без учета нелинейных членов в законе упругости в закритической области прямолинейная форма вала всегда неустойчива (при Ω> Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvcaaMc8UaeyOpa4JaaGPaVlabfM6axn aaBaaaleaacaqGJbGaaeOCaiaabMgacaqG0baabeaaaaa@3C2E@ : ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqbdaqaaeXafv3ySLgzGmvETj2BSbaceeGae8 NVdGhacaGLjWUaayPcSdGaaGPaVlabgkziUkaaykW7cqGHEisPaaa@4170@  ). Наличие кубической нелинейности в упругой составляю­щей в деформациях приводит к появлению дополнительной верхней ветви периодических решений в докритической области в диапазоне скоростей Ω ; Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWadaqaaiabfM6axnaaBaaaleaacqGHsislae qaaOGaai4oaiaaykW7caaMc8UaeuyQdC1aaSbaaSqaaiaabogacaqG YbGaaeyAaiaabshaaeqaaaGccaGLBbGaayzxaaaaaa@3F04@ , которая продолжается в закритической области. В зависимости от значений времени релаксации неупругих деформаций η V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaaqabaaaaa@33BD@  в материале вала возможны два различных сценария бифуркаций скорости вращения вала. При относительно большом времени релаксации (здесь η V 0.0004 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaaqabaGccqGHLj YScaaIWaGaaiOlaiaaicdacaaIWaGaaGimaiaaisdaaaa@39E5@ , рис. 8а) наб­людается сверхкритическая бифуркация прямолинейного вращения вала при критической скорости вращения Ω= Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvcqGH9aqpcqqHPoWvdaWgaaWcbaGaae 4yaiaabkhacaqGPbGaaeiDaaqabaaaaa@3916@ . При увеличении скорости вращения происходит мягкое возбуждение асинхронного прецессирования оси вала (рис. 8б) – 0< Λ ¯ <1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaaIWaGaeyipaWJafu4MdWKbaebacqGH8aapca aIXaaaaa@3614@ . При уменьшении времени релаксации (здесь для η V <0.0004 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaaqabaGccqGH8a apcaaIWaGaaiOlaiaaicdacaaIWaGaaGimaiaaisdaaaa@3923@  рис. 8а) появляется новая точка бифуркации скорости вращения вала Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaeyOeI0cabeaaaaa@33B1@  при продолжающемся увеличении критической скорости Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaae4yaiaabkhacaqGPb GaaeiDaaqabaaaaa@3682@ . В диа­пазоне Ω ; Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWadaqaaiabfM6axnaaBaaaleaacqGHsislae qaaOGaai4oaiaaykW7caaMc8UaeuyQdC1aaSbaaSqaaiaabogacaqG YbGaaeyAaiaabshaaeqaaaGccaGLBbGaayzxaaaaaa@3F04@  существует дополнительная ветвь неустойчивых периодических движений (рис. 8,c), соединяющая точки Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaeyOeI0cabeaaaaa@33B1@  и Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaae4yaiaabkhacaqGPb GaaeiDaaqabaaaaa@3682@ . Нижняя точка Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaeyOeI0cabeaaaaa@33B1@  является бифуркацией типа предельной точкой слияния устойчивого и неустойчивого периодического движения и субкритической бифуркации в точке Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaae4yaiaabkhacaqGPb GaaeiDaaqabaaaaa@3682@ , при достижении которой происходит жесткое возбуждение прецессионного движения. Т.е. возникает область гистерезисного поведения вала: при адиабатическом изменении скорости вращения вала: при движении “вперед–назад” динамическая система проходит через различные состояния.

Исследование выполнено за счет гранта РНФ (проект № 24-19-00333, https://rscf.ru/project/24-19-00333/).


1 Векторы как инвариантные объекты обозначаются прямым жирным шрифтом с верхней стрелкой. Компоненты векторов в подвижном базисе помечены верхней тильдой. Соответствующие матричные объекты пишутся без верхней стрелки.

×

Об авторах

А. А. Азаров

Московский государственный технический университет им. Н.Э. Баумана

Автор, ответственный за переписку.
Email: 13azarov.ru@gmail.com
Россия, Москва

А. М. Гуськов

Московский государственный технический университет им. Н.Э. Баумана; Институт машиноведения им. А.А. Благонравова РАН

Email: gouskov_am@mail.ru
Россия, Москва; Москва

Г. Ю. Пановко

Институт машиноведения им. А.А. Благонравова РАН

Email: gpanovko@yandex.ru
Россия, Москва

Список литературы

  1. Болотин В.В. Неконсервативные задачи теории упругой устойчивости. М.: Физматгиз, 1961. 340 с.
  2. Ding Q., Cooper J., Leung A. Hopf bifurcation analysis of a rotor/seal system // J. Sound Vib. 2002. V. 252. № 5. P. 817–833. https://doi.org/10.1006/jsvi.2001.3711
  3. Karpenko E.V., Pavlovskaia E.E. Bifurcation analysis of a preloaded Jeffcott rotor // Chaos, Solutions and Fractals. 2003. V. 15. № 2. P. 407–416. https://doi.org/10.1016/S0960-0779(02)00107-8
  4. Ehrich F. Observations of subcritical, superharmonic and chaotic response in rotor dynamics // J. Vib. Acoust. 1992. V. 114. № 1. P. 93–100. https://doi.org/10.1115/1.2930240
  5. Kimpbal A. Internal friction as a cause of shaft whirling // Phil. Mag. 1925. V. 49. P. 724–727.
  6. Newkirk B.L. Saft wipping // General Electric Review. 1924. V. 27. № 3. P. 169–178.
  7. Genta G. et al. Vibration dynamics and control. New York: Springer, 2009.
  8. Li Y. et al. Dynamic modelling and vibration analysis of a bolted spigot joint structure considering mating interface friction: simulation and experiment // Nonlinear Dyn. 2024. V. 112. P. 7977–8000. https://doi.org/10.1007/s11071-024-09365-6
  9. Schwarz U. Continuum mechanics. Heilenberg University, 2023.
  10. Lewandowski R., Chorążyczewski B. Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers // Comput. struct. 2010. V. 88. № 1–2. P. 1–17. https://doi.org/10.1016/j.compstruc.2009.09.001
  11. Hetzler H., Boy F. Internal dissipation and self-excited ocillations in rotating machinery: internal friction vs. internal viscous damping // ISROMAC 2017. 2017.
  12. Азаров А.А., Гуськов А.М., Пановко Г.Я. Динамика гибкого ротора с диском при точечном контакте с дискретными вязкоупругими ограничителями колебаний // Проблемы машиностроения и надежности машин. 2023. № 1. С. 26–37. https://doi.org/10.31857/S0235711923010029
  13. Пановко Я.Г. Внутреннее трение при колебаниях упругих систем. М.: Физматгиз, 1960. 193 с.
  14. Светлицкий В.А. Механика стержней: Учеб. для втузов. В 2-х ч. Ч. 1. Статика. М.: Высшая школа, 1987. 320 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Расчетная схема вращающегося вала: 1 – траектория прецессии, 2 – направление вращения.

Скачать (13KB)
3. Рис. 2. Диаграмма Аргана в диапазоне скоростей вращения .

Скачать (15KB)
4. Рис. 3. Перемещения срединного узла при закритической скорости при , , : (a) , ; (b) , ; (c) , .

Скачать (41KB)
5. Рис. 4. Бифуркационная диаграмма вдоль верхней периодической ветви, А – предельная точка, B – субкритическая бифуркация ( , , , , ).

Скачать (22KB)
6. Рис. 5. Прецессия сечения стержня, соответствующего срединному узлу.

7. Рис. 6. Распределение среднего значения коэффициента прецессия вдоль верхней устойчивой ветви ( , , , , ).

Скачать (15KB)
8. Рис. 7. Траектории узлов коллокации при установившемся движении (черные линии) и формы изо-гнутой оси (красные линии) ( , , , , , ).

Скачать (19KB)
9. Рис. 8. Зависимость и от коэффициента (а); распределение амплитуд переме-щений срединного узла при субкритической (b) и суперкритической (c) бифуркациях ( , , , ).

Скачать (44KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).