Chloroplast DNA Polymorphism of Medicinal Plant Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. on the South of the Russian Far East

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The nucleotide sequences polymorphism of the trnL-trnF, rpl16 intron, and matK regions of chloroplast DNA of the medicinal plant Eleutherococcus senticosus in the south of the Russian Far East (RFE) has been studied. The level of genetic diversity was found to be high in the populations of Primorsky Krai and average on Sakhalin Island. Hierarchical analysis of molecular variance showed very low and insignificant genetic differentiation between the populations of these two regions (ΦCT = 0.043, P > 0.479); more than 62% of all genetic variability accounted for the intrapopulation component (ΦST = 0.377, P = 0.000). Eleven haplotypes were identified on the RFE, one of which was private and two were rare for species. All haplotypes known for E. senticosus form a single group with minimal divergence between each other.

Авторлар туралы

E. Vasyutkina

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences

Email: levina@biosoil.ru
Vladivostok, Russia

V. Sheiko

the Botanical Garden-Institute, Far Eastern Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: levina@biosoil.ru

Sakhalin Branch

Yuzhno-Sakhalinsk, Russia

Әдебиет тізімі

  1. Журавлев Ю. Н., Коляда А. С. Araliaceae: женьшень и другие. Владивосток: Дальнаука, 1996. 280 с.
  2. Крестов П. В., Баркалов В. Ю., Таран А. А. Ботанико-географическое районирование острова Сахалин // Растительный и животный мир острова Сахалин (материалы Международного сахалинского проекта). Владивосток: Дальнаука, 2004. Т. 1. С. 67–90.
  3. Кузнецов К. В., Горшков Г. И. Элеутерококк колючий (Eleutherococcus senticosus) — адаптоген, стимулятор функций организма животных и иммуномодулятор // Международный журнал прикладных и фундаментальных исследований. 2016. № 11. С. 477–485.
  4. Сюткина Н. И., Купин В. И., Лепин В. П. Применение элеутерококка в онкологии // Вестн. РОНЦ им. Н. Н. Блохина РАМН. 1992. № 4. С. 23–31.
  5. Государственная Фармакопея Российской Федерации. XIV издание. М.: ФЭМБ, 2018. Т. IV. С. 6649–6660.
  6. Bandelt H.-J., Forster P., Rohl A. Median-joining networks for inferring intraspecific phylogenies // Mol. Biol. Evol. 1999. V. 16. № 1. P. 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
  7. Evstigneeva T.A., Bondarenko O.V., Utescher T. Climate and vegetation changes in southern Primorye (Russian Far East) since the Last Glacial Maximum: A quantitative analysis // Palaeoworld. 2025. V. 34. № 1. P. 100870. https://doi.org/10.1016/j.palwor.2024.06.009
  8. Excoffier L., Lischer H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows // Molecular Ecology Resources. 2010. V. 10. P. 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  9. Han H.S., Kim D.Y., Lee K.Y., Park W.G., Cho I.K., Jung J.S. Comparative analysis of Acanthopanax senticosus Harms from Korea, China and Russia based on the ITS sequences of nuclear ribosomal DNA // Korean J. Plant Res. 2006. V. 19. № 1. P. 54–58.
  10. Huh M.K., Huh H.W. Classification of genus Acanthopanax in Korea and genetic diversity using allozymes // Silvae Genetica. 2005. V. 54. № 4/5. P. 206–210. doi: 10.1515/sg-2005-0030
  11. Isabel N., Tremblay L., Michaud M., Tremblay F.M., Bousquet J. RAPDs as an aid to evaluate the genetic integrity of somatic embryogenesis derived populations of Picea mariana (Mill.) B.S.P. // Theor. Appl. Genet. 1993. V. 86. P. 81–87. doi: 10.1007/BF00223811
  12. Korean Red List of Threatened Species: Second Edition. National Institute of Biological Resources, 2014. P. 192.
  13. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms // Molecular Biology and Evolution. 2018. V. 35. P. 1547–1549. doi: 10.1093/molbev/msy096
  14. Ptaszynska A.A., Zatuski D. Extracts from Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. Roots: a new hope against honeybee death caused by nosemosis // Molecules. 2020. V. 25. P. 4452. https://doi.org/10.3390/molecules25194452
  15. Shaw J., Lickey E.B., Schilling E.E., Small R.L. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III // Am. J. Bot. 2007. V. 94. P. 275–288. https://doi.org/10.3732/ajb.94.3.275
  16. Small R.L., Ryburn J.A., Cronn R.C., Seelanan T., Wendel J.F. The tortoise and the hare: choosing between noncoding plastome and nuclear ADH sequences for phylogeny reconstruction in a recently diverged plant group // Am. J. Bot. 1998. V. 85. P. 1301–1315. https://doi.org/10.2307/2446640
  17. Taberlet P., Gielly L., Pautou G., Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA // Plant Mol. Biol. 1991. V. 17. P. 1105–1109. doi: 10.1007/BF00037152
  18. Wang S.-H., Bao L., Wang T.-M., Wang H.-F., Ge J.-P. Contrasting genetic patterns between two coexisting Eleutherococcus species in northern China // Ecology and Evolution. 2016. V. 6. № 10. P. 3311–3324. https://doi.org/10.1002/ece3.2118
  19. Zhou S.-L., Wen J., Hong D.-Y. Allozyme diversity in Eleutherococcus senticosus and E. brachypus (Araliaceae) from China and ITS implication for conservation // SIDA. 2004. V. 21. № 2. P. 993–1007.
  20. Zuo Y., Chen Z., Kondo K., Funamoto T., Wen J., Zhou S. DNA barcoding of Panax species // Planta Med. 2011. V. 77. P. 182–187. doi: 10.1055/s-0030-1250166

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).