Variability of earlywood vessel row number of pedunculate oak (Quercus robur L.) and common ash (Fraxinus excelsior L.) in response to external factors
- Authors: Vakaliuk L.A1, Nilova M.V2, Khasanov B.F1
-
Affiliations:
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
- Lomonosov Moscow State University
- Issue: No 6 (2025)
- Pages: 616-629
- Section: BOTANY
- URL: https://ogarev-online.ru/1026-3470/article/view/355616
- DOI: https://doi.org/10.7868/S1026347025060022
- ID: 355616
Cite item
Full Text
Abstract
Dendrochronological analysis of oak (Quercus robur L.) and ash (Fraxinus excelsior L.) trees sampled in Kozelsk Zaseki allowed us to reconstruct the disturbance history of a part of this forest area for the last 150 years. Large and medium scale disturbances were detected in 1868, 1940, 1957, 1971 and 1977. In the last case, the results of the dendrochronological analysis are supported by archival documents. It is shown that after disturbances both studied species show significant increase in the percentage of tree-rings with higher number of earlywood vessel rows. Similar changes in anatomical structure may occur in response to extreme floods and winter frosts. Possible mechanisms of the formation of the studied anatomical features are considered.
About the authors
L. A Vakaliuk
A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
Email: l.vakalnik@yandex.ru
Moscow, Russia
M. V Nilova
Lomonosov Moscow State University
Email: l.vakaliuk@yandex.ru
Biological Faculty
Moscow, RussiaB. F Khasanov
A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
Author for correspondence.
Email: l.vakaliuk@yandex.ru
Moscow, Russia
References
- Altman J., Fibich P., Dolezal J., Aakala T. TRADER: A package for Tree Ring Analysis of Disturbance Events in R // Dendrochronologia. 2014. V. 32. № 2. P. 107–112. https://doi.org/10.1016/j.dendro.2014.01.004
- Altman J. Tree-ring-based disturbance reconstruction in interdisciplinary research: Current state and future directions // Dendrochronologia. 2020. V. 63. Article 125733. https://doi.org/10.1016/j.dendro.2020.125733
- Aloni R. How the Three Organ-Produced Signals: Auxin, Cytokinin and Gibberellin, Induce and Regulate Wood Formation and Adaptation // Auxins, Cytokinins and Gibberellins Signaling in Plants / ed. T. Aftab. Cham: Springer International Publishing, 2022. P. 1–23.
- Astrade L., Bégin Y. Tree-ring response of Populus tremula L. and Quercus robur L. to recent spring floods of the Sáône River, France // Écoscience. 1997. V. 4. № 2. P. 232–239.
- Ballesteros-Canovas J.A., Stoffel M., St George S., Hirschboeck K. A review of flood records from tree rings // Progress in Physical Geography: Earth and Environment. 2015. V. 39. P. 794–816. https://doi.org/10.1177/0309133315608758
- Battipaglia G., Campelo F., Vieira J., Grabner M., De Micco V., Nabais C., Cherubini P., Carrer M., Bräuning A., Čufar K., Di Filippo A., García-González I., Koprowski M., Klisz M., Kirdyanov A.V., Zafirov N., de Luis M. Structure and function of intra–annual density fluctuations: mind the gaps // Frontiers in Plant Science. 2016. V. 7. P. 595. https://doi.org/10.3389/fpls.2016.00595
- Black B.A., Abrams M.D. Use of boundary-line growth patterns as a basis for dendroecological release criteria // Ecol. Appl. 2003. V. 13. № 6. P. 1733–1749. https://doi.org/10.1890/02-5122
- Black B.A., Abrams M.D., Rentch J.S., Gould P.J. Properties of boundary-line release criteria in North American tree species // Ann. For. Sci. 2009. V. 66. № 2. P. 205–205. https://doi.org/10.1051/forest/2008087
- Bräuning A., De Ridder M., Zafirov N., García-González I., Dimitrov D.P., Gärtner H. Tree-ring features: indicators of extreme event impacts // IAWA J. 2016. V. 37. № 2. P. 206–231. https://doi.org/10.1163/22941932-20160131
- Copini P., den Ouden J., Robert E.M., Tardif J.C., Loesberg W.A., Goudzwaard L., Sass-Klaassen U. Flood-ring formation and root development in response to experimental flooding of young Quercus robur trees // Frontiers of Plant Science. 2016. V. 7. P. 775. https://doi.org/10.3389/fpls.2016.00775
- De Micco V., Campelo F., De Luis M., Bräuning A., Grabner M., Battipaglia G., Cherubini P. Intra-annual density fluctuations in tree rings: how, when, where, and why? // IAWA Journal. 2016. V. 37. P. 232–259. https://doi.org/10.1163/22941932-20160132
- Fraver S., White A.S. Identifying growth releases in dendrochronological studies of forest disturbance // Can. J. For. Res. 2005. V. 35. № 7. P. 1648–1656. https://doi.org/10.1139/x05-092
- Hilmers T., Leroy B.M.L., Bae S., Hahn W.A., Hochrein S., Jacobs M., Lemme H., Müller J., Schmied G., Weisser W.W., Pretzsch H. Growth response of oaks to insect defoliation: Immediate and intermediate perspectives // For. Ecol. Manage. 2023. V. 549. Article 121465. https://doi.org/10.1016/j.foreco.2023.121465
- Khasanov B.F. Severe winter rings of oak trees (Quercus robur L.) from Central European Russia // International Journal of Biometeorology. 2013. V. 57. P. 835–843. https://doi.org/10.1007/s00484-012-0611-1
- Khasanov B.F., Sandlersky R.B. Does insect induced defoliation affect anatomical structure of oak wood? Dendrochronologia. 2018. V. 51. P. 66–75. https://doi.org/10.1016/j.dendro.2018.08.003
- Kozlowski T.T. Responses of woody plants to flooding and salinity // Tree Physiology. 1997. V. 17. № 7. P. 1–29. https://doi.org/10.1093/treephys/17.7.490
- Nowacki G.J., Abrams M.D. Radial-growth averaging criteria for reconstructing disturbance histories from presettlement-origin oaks // Ecol. Monogr. 1997. V. 67. № 2. P. 225–249. https://doi.org/10.1890/0012-9615(1997)067[0225:RGACFR]2.0.CO;2
- R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2022. https://www.R-project.org
- Rentch J.S., Fajvan M.A., Hicks R.R. Oak establishment and canopy accession strategies in five old-growth stands in the central hardwood forest region // For. Ecol. Manage. 2003. V. 184. № 1–3. P. 285–297. https://doi.org/10.1016/S0378-1127(03)00155-5
- St. George S., Nielsen E. Palaeoflood records for the Red River, Manitoba, Canada, derived from anatomical tree-ring signatures // Holocene. 2003. V. 13. № 4. P. 547–555. https://doi.org/10.1191/0959683603hl645pp
- Stokes M.A., Smiley T.L. An Introduction to Tree-Ring Dating. The University of Arizona Press, Tucson, 1996. 73 p.
- Schweingruber F.H. Wood structure and environment. Springer-Verlag, Berlin, Heidelberg, New York. 2007. 279 p.
- Sokal R.R., Rohlf F.J. Biometry, the principles and practice of statistics in biological research. W.H. Freeman and company, San Francisco. 1969. 776 p.
- Therrell M.D., Bialecki M.B. A multi-century tree-ring record of spring flooding on the Mississippi River // Journal of Hydrology. 2015. V. 592. P. 490–498. https://doi.org/10.1016/j.jhydrol.2014.11.005
- Trotsiuk V., Pederson N., Druckenbrod D.L., Orwig D.A., Bishop D.A., Barker-Plotkin A., Fraver S., Martin-Benito D. Testing the efficacy of tree-ring methods for detecting past disturbances // For. Ecol. Manage. 2018. V. 425. P. 59–67. https://doi.org/10.1016/j.foreco.2018.05.045
- Vasíčková I., Šamonil P., Fuentes-Utrilla A., Král K., Daněk P., Adam D. The true response of Fagus sylvatica L. to disturbances: A basis for the empirical inference of release criteria for temperate forests // For. Ecol. Manage. 2016. V. 374. P. 174–185. https://doi.org/10.1016/j.foreco.2016.04.055
- Wertz E.L., George S. St., Zeleznik J.D. Vessel anomalies in Quercus macrocarpa tree rings associated with recent floods along the Red River of the North, United States // Water Resour. Res. 2013. V. 49. № 1. P. 630–634. https://doi.org/10.1029/2012WR012900
- Wimmer R. Wood anatomical features in tree-rings as indicators of environmental change // Dendrochronologia. 2002. V. 20. P. 21–36. https://doi.org/10.1078/1125-7865-00005
- Yanosky T.M. Evidence of Floods on the Potomac River From Anatomical Abnormalities in the Wood of Flood Plain Trees. // Geol. Surv. Prof. Pap. (United States). 1983.
Supplementary files

