FORMATION OF SMALL WATER CLUSTERS IN THE NEAR-NUCLEUS ATMOSPHERE OF A COMET

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of a theoretical study of the formation and decay of water clusters in cometary atmospheres are presented. A model for the formation of small water clusters is developed based on a quasi-chemical approach. The physical conditions for the formation and growth of clusters in near-nucleus coma are analyzed, depending on the distance of the cometary nucleus from the Sun, and possible mechanisms for cluster formation. Using the developed clustering model and the direct statistical Monte Carlo simulation method, calculations are performed for the outflow of water molecules sublimated from the surface of the cometary nucleus into vacuum. For the case of homogeneous condensation, using the nucleus of comet 46P/Wirtanen as an example, a small fraction of clusters (less than 0.1%) is determined for a cometary distance of 2.5 AU from the Sun for various distributions of gas production over the surface. The coordinated motion of small clusters and monomers is demonstrated.

About the authors

N. Y Bykov

Peter the Great Saint-Petersburg Polytechnic University

Email: nbykov2006@yandex.ru
Saint-Petersburg, Russia

V. V Zakharov

Université PSL, CNRS, Sorbonne Université, Université Paris Cité

LIRA, Observatoire de Paris Meudon, France

I. S Tomilin

Peter the Great Saint-Petersburg Polytechnic University

Saint-Petersburg, Russia

A. S Sklyarova

Peter the Great Saint-Petersburg Polytechnic University

Saint-Petersburg, Russia

References

  1. Thomas N. An Introduction to Comets: Post-Rosetta Perspectives // Springer International Publishing. 2020. P. 537.
  2. Thomas P.J., Chyba C.F., McKay C.P., and Yano H. Comets and the Origin and Evolution of Life // Springer. 2006. P. 346.
  3. Еленин Л.В. Кометы. Странники Солнечной системы М.: Эксмо, 2024. 304 с.
  4. Crifo J.F. Water clusters in the coma of comet Halley and their effect on the gas density, temperature, and velocity // Icarus. 1990. V. 84. No. 2. P. 414–446.
  5. Стернин Л.Е. Основы газодинамики двухфазных течений в соплах М.: Машиностроение, 1974. 211 с.
  6. Горбунов В.Н., Пирумов У.Г., Рыжов Ю.А. Неравновесная конденсация в высокоскоростных потоках газа М.: Машиностроение, 1984. 201 с.
  7. Ivanov I.E., Nazarov V.S., and Kryukov I.A. Application of the Moment Method for Numerical Simulation of Homogeneous-Heterogeneous Condensation // Fluids. 2022. V. 7. 68.
  8. Kitamura Y., Yamamoto T. Hydrodynamic study of condensation and sublimation of ice particles in cometary atmospheres // Icarus. 1986. V. 68. No. 2. P. 266–275.
  9. Zakharov V.V., Crifo J.-F., Rodionov A.V., Rubin M., and Altwegg K. The near-nucleus gas coma of comet 67P/Churyumov-Gerasimenko prior to the descent of the surface lander PHILAE // Astronomy & Astrophysics. 2018. 618. A7.
  10. Хлопков А.Ю. Конденсация паров воды. Классический и квантовый подходы // Фундаментальные исследования. 2015. № 7–4. С. 782–787.
  11. Егоров Б.В., Маркачев Ю.Е., Плеханов Е.А. Квазихимическая модель нуклеации паров воды // Химическая физика. 2006. Т. 25. № 4. C. 61–70.
  12. Zhukhovitskii D.I. Multiscale approach to the theory of nonisothermal homogeneous nucleation // The Journal of Chemical Physics. 2024. V. 160. No. 19. https://doi.org/10.1063/5.0198471
  13. Bird G.A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows // Oxford Clarendon Press. 1994. P. 458.
  14. Bird G.A. The DSMC Method // CreateSpace Independent Publishing Platform. 2013. P. 300.
  15. Иванов М.С., Рогазинский С.В. Метод прямого статистического моделирования в динамике разреженного газа // М: ВЦ СО АН СССР. 1988. С. 117.
  16. Bykov N.Y., Gorbachev Yu.E. Mathematical models of water nucleation process for the Direct Simulation Monte Carlo method // Applied Mathematics and Computation. 2017. V. 296. P. 215–232. https://doi.org/10.1016/j.amc.2016.10.004
  17. Bykov N.Y., Fyodorov S.A., and Gorbachev Yu.E. Small cluster formation in a free argon jet // Physics of Fluids. 2024. V. 36. No. 8. https://doi.org/10.1063/5.0222569
  18. Stern S.A., Parker J.W.M., Festou M.C., A’Hearn M.F., Feldman P.D., Schwehm G., Schulz R., Bertaux J.-L., and Slater D.C. HST mid ultraviolet spectroscopy of comet 46P/Wirtanen during its approach to perihelion 1996–1997 // Astronomy and Astrophysics. 1998. V. 335. P. 30.
  19. Crifo J.F., Lukianov G.A., Rodionov A.V., Khanlarov G.O., and Zakharov V.V. Comparison between Navier–Stokes and Direct Monte–Carlo Simulations of the Circumnuclear Coma. I. Homogeneous, Spherical Source // Icarus. 2002. V. 156. P. 249–268.
  20. Jansen R., Wysong I., Gimelshein S., Zeifman M., Buck U. Nonequilibrium numerical model of homogeneous condensation in argon and water vapor expansions // The Journal of Chemical Physics. 2010. V. 132. No. 24. 244105.
  21. Быков Н.Ю. Об образовании малых кластеров в свободно-расширяющейся струе водяного пара // Механика жидкости и газа. 2018. № 3. С. 98–107.
  22. Zhukhovitskii D.I. Size-corrected theory of homogeneous nucleation // The Journal of Chemical Physics. 1994. V. 101. No. 6. P. 5076–5080.
  23. Гордиец Б.Ф., Шелепин Л.А., Шмоткин Ю.С. Кинетика изотермических процессов гомогенной конденсации // Труды ФИАН, 1984. Т. 145. С. 189–219.
  24. Skorov Yu., Reshetnyk V., Küppers M., Bentley M.S., Besse S., and Hartogh P. Sensitivity of modelled cometary gas production on the properties of the surface layer of the nucleus // Monthly Notices of the Royal Astronomical Society. 2023. V. 519. No. 1. P. 59–73.
  25. Vegiri A., Farantos S.C. Classical dynamics of hydrogen bonded systems: Water clusters // The Journal of Chemical Physics. 1993. V. 98. P. 4059.
  26. Schenter G.K., Kathmann S.M., and Garrett B.C. Dynamical benchmarks of the nucleation kinetics of water // J. Chem. Phys. 2002. V. 116. P. 4275–4280.
  27. Calo J.M. Dimer formation in supersonic water vapor molecular beams // The Journal of Chemical Physics. 1975. V. 62. P. 4904.
  28. Li Z., Zhong J., Levin D.A., and Garrison B.J. Kinetic nucleation model for free expanding water condensation plume simulations // The Journal of Chemical Physics. 2009. V. 130. 174309.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).