INFLUENCE OF GEOMETRY AND FUEL INJECTION ON THERMOACOUSTIC INSTABILITIES IN A SUPERSONIC CAVITY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study numerically investigates thermoacoustic instabilities in a supersonic cavity-based combustor relevant to scramjet engine applications. Simulations explore the influence of cavity geometry (aft-wall angles of 22.5◦, 45◦, and 90◦, and length-to-depth ratios of 4 and 7) and fuel injection pressure (0.6 MPa to 1.8 MPa) on flow dynamics and combustion characteristics with hydrogen fuel. Non-reacting flow simulations reveal advection and acoustic oscillations within the cavity, with frequencies matching analytical predictions. The introduction of combustion suppresses low-frequency pulsations while stimulating high-frequency oscillations (15–20 kHz), with larger aft-wall angles promoting more intense vortical structures and higher frequency oscillations. Increasing fuel injection pressure leads to a non-linear response. Higher injection pressures induce a flow “choking” phenomenon and a shift towards lower frequency oscillations associated with large-scale vortex shedding, in comparison with lower injection pressures. The simulation results exhibit good agreement with experimental data, indicating the importance of both advection/acoustic oscillations and the complex interaction of flow dynamics, combustion, and fuel injection in shaping the thermoacoustic behavior of supersonic cavity-based combustors.

About the authors

R. K Seleznev

Dukhov Research Institute of Automatics (VNIIA); Ishlinsky Institute for Problems in Mechanics RAS

Email: rkseleznev@gmail.com
Moscow, Russia; Moscow, Russia

References

  1. Seleznev R.K. History of scramjet propulsion development // J. Phys. Conf. Ser. 2018. V. 1009.№1. P. 012028.
  2. Seleznev R.K., Surzhikov S.T., Shang J.S. A review of the scramjet experimental data base // Prog. Aerosp. Sci. Elsevier Ltd, 2019. V. 106.№February. P. 43–70.
  3. Curran E.T. Scramjet Engines: The First Forty Years // J. Propuls. Power. 2001. V. 17.№6. P. 1138–1148.
  4. Liu Q., Baccarella D., and Lee T. Review of combustion stabilization for hypersonic airbreathing propulsion // Prog. Aerosp. Sci. 2020. V. 119.№217. P. 1–153.
  5. Wang Z.,Wang H., and Sun M. Review of cavity-stabilized combustion for scramjet applications // Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2014. V. 228.№14. P. 2718–2735.
  6. Micka D.J. Combustion Stabilization , Structure , and Spreading in a Laboratory Dual-Mode Scramjet Combustor by. 2010.
  7. Ben-Yakar A., Hanson R.K. Cavity flame-holders for ignition and flame stabilization in scramjets: An overview // J. Propuls. Power. 2001. V. 17.№4. P. 869–877.
  8. Choi J.Y., Yang V. Dynamics of reactive fuel-jet in scramjet combustor with a flame-holding cavity // 39th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. Exhib. 2003.№July. P. 1–7.
  9. Heller H., Delfs J. Cavity pressure oscillations: The generating mechanism visualized // J. Sound Vib. 1996. Vol. 196. №2. P. 248–252.
  10. Заугольников Н.Л., Коваль М.А., Швец А.И. Пульсации потока газа в кавернах при сверхзвуковом обтекании // Изв. АН СССР. МЖГ. 1990.№2. С. 121–127.
  11. Heller H., Bliss D. The physical mechanism of flow-induced pressure fluctuations in cavities and concepts for their suppression // 2nd Aeroacoustics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics. 1975. V. 2666.№1928. P. 1931–1932.
  12. Hankey W.L., Shang J.S. Analyses of Pressure Oscillations in an Open Cavity // AIAA J. 1980. Vol. 18. № 8. P. 892–898.
  13. Zhang X., Edwards J.A. An investigation of supersonic oscillatory cavity flows driven by thick shear layers // Aeronaut. J. 1990. V. 94.№940. P. 355–364.
  14. Vakili A.D. et al. Active control of cavity aeroacoustics in high speed flows // 33rd Aerosp. Sci. Meet. Exhib. 1995.
  15. Vakili A.D., Gauthier C. Control of cavity flow by upstream mass injection // AIAA 22nd Fluid Dyn. Plasma Dyn. Lasers Conf. 1991. 1991. V. 31.№1.
  16. Rossiter J.E., Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds // Aeronautical Research Council Reports & Memoranda. October 1964.№3438.
  17. Beranek B. Aerodynamically induced pressure osillations in cavities — physical mechanisms and suppression concepts // Airf. flight Dyn. Lab. 1975.
  18. Даньков Б.Н., Дубень А.П., Козубская Т.К. Анализ автоколебательных процессов в каверне с открытым типом течения на основе данных вихреразрешающих расчетов // Изв. РАН. МЖГ. 2023.№4. С. 156–166.
  19. Pandian S., Desikan S.L.N., and Niranjan S. Experimental investigation of starting characteristics and wave propagation from a shallow open cavity and its acoustic emission at supersonic speed // Phys. Fluids. 2018. V. 30. №1.
  20. Wang H.,Wang Z., and Sun M. Experimental study of oscillations in a scramjet combustor with cavity flameholders // Exp. Therm. Fluid Sci. Elsevier Inc. 2013. V. 45. P. 259–263.
  21. Doshi P.S., Ranjan R., and Gaitonde D.V. Global and local modal characteristics of supersonic open cavity flows // Phys. Fluids. AIP Publishing LLC, 2022. V. 34.№3.
  22. Liu Q., Gaitonde D. Acoustic response of turbulent cavity flow using resolvent analysis // Phys. of Fluids. 2021. V. 33. No. 5.
  23. Даньков Б.Н., Дубень А.П., Козубская Т.К. Численное моделирование возникновения автоколебательного процесса возле трехмерного обратного уступа при трансзвуковом режиме обтекания // Изв. РАН. Механика жидкости и газа. 2016.№4. P. 108–119.
  24. Селезнев Р.К. Анализ структуры течения в сверхзвуковом канале с каверной // Изв. РАН. МЖГ. 2024.№1. С. 83–90.
  25. Choi J.Y., Ma F., and Yang V. Combustion oscillations in a scramjet engine combustor with transverse fuel injection // Proc. Combust. Inst. 2005. V. 30 II. P. 2851–2858.
  26. Choi J.Y. et al. Detached Eddy simulation of combustion dynamics in scramjet combustors // Collect. Tech. Pap. 43rd AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. 2007. Vol. 1. July. P. 231–237.
  27. Ma F., Li J., and Yang V. Thermoacoustic Flow Instability in a Scramjet Combustor // AIAA Pap. 2005. July. P. 1–11.
  28. Lin K.C. et al. Acoustic characterization of an ethylene-fueled scramjet combustor with a cavity flameholder // J. Propuls. Power. 2010. V. 26.№6. P. 1161–1169.
  29. Li J. et al. A comprehensive study of combustion oscillations in a hydrocarbon-fueled scramjet engine // Collect. Tech. Pap. - 45th AIAA Aerosp. Sci. Meet. 2007. V. 15. January. P. 10170–10181.
  30. Суржиков С.Т. Термогазодинамика модельной камеры сгорания этилена в сверхзвуковом потоке // Изв. РАН. МЖГ. 2022.№3. С. 115-134.
  31. Donohue J.M. Dual-Mode Scramjet Flameholding Operability Measurements // J. Propuls. Power. 2014. V. 30. January. P. 592–603.
  32. Wang Y. et al. Combustion stabilization modes in a hydrogen-fueled scramjet combustor at high stagnation temperature // Acta Astronaut. Elsevier Ltd, 2018. V. 152. July. P. 112–122.
  33. Combustors S. et al. Diagnostic Investigation of Flow field Characteristics of. 2014. P. 1–19.
  34. Choubey G. et al. Numerical investigation on a typical scramjet combustor using cavity floor H2 fuel injection strategy // Acta Astronaut. IAA, 2023. V. 202. November. P. 373–385.
  35. He Z. et al. Effect of Fuel-Injection Distance and Cavity Rear-Wall Height on the Flameholding Characteristics in a Mach 2.52 Supersonic Flow // Aerospace. 2022. V. 9.№10.
  36. Sun M. et al. Unsteady supersonic combustion // Unsteady supersonic combustion. 2020. 345 p.
  37. Seleznev R.K. Numerical study of the flow structure in the supersonic inlet-isolator // J. Phys. Conf. Ser. 2018.V. 1009. P. 012034.
  38. Селезнев Р.К. Численное исследование ПВРД и ГПВРД режимов работы камеры сгорания HIFiRE-2 // Изв. РАН. МЖГ. 2022.№6. С. 64–73.
  39. Seleznev R.K. Validation of 3D model by the example of a supersonic inlet-isolator // J. Phys. Conf. Ser. 2018. V. 1009. P. 012031.
  40. Seleznev R.K. Validation of two-dimensional model by the example of a supersonic inlet-isolator // J. Phys. Conf. Ser. 2018. V. 1009. P. 012030.
  41. Surzhikov S. et al. Unsteady Thermo-Gasdynamic Processes in Scramjet Combustion Chamber with Periodical Input of Cold Air // 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. P. 25.
  42. Селезнев Р.К. Исследование структуры течения в модельном воздухозаборнике ГПВРД с поперечной подачей водородного топлива в сверхзвуковой поток // Изв. РАН. МЖГ. 2021.№3. С. 30–38.
  43. Surzhikov S.T. On two-dimensional numerical modeling of the Burrows - Kurkov experimental data on hydrogen combustion in a supersonic air flow usingNS/RANS equations // Phys. Kinet. Gas Dyn. 2021. V. 22.№4. P. 88–124.
  44. Surzhikov S.T. Results of the Use of Algebraic Models of Turbulence in the Framework of the RANS Model of Heating the Surface of a Sharp Plate in a Supersonic Flow. 2023. V. 24.№3. P. 1–49.
  45. Суржиков С.Т. Аэрофизика обтекания затупленного клина конечных размеров // Изв. РАН. Механика жидкости и газа. 2021.№5. P. 89–102.
  46. Суржиков С.Т. Теплообмен и ионизация при неравновесном обтекании затупленной пластины гиперзвуковым потоком // Изв. РАН. Механика жидкости и газа. 2021.№6. P. 109–124.
  47. Edwards J. et al. Low-diffusion flux-splitting methods for flows at all speeds // 13th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. V. 36.№9.
  48. Evans J.S., Schexnayder C.J. Influence of Chemical Kinetics and Unmixedness on Burning in Supersonic Hydrogen Flames // AIAA J. 1980. V. 18.№2. P. 188–193.
  49. Seleznev R., Surzhikov S. Generalized Newton Method For Solving Differential Equations of Chemical Kinetics // 44th AIAA Thermophysics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics. 2013. P. 1–17.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).