INFLUENCE OF GEOMETRY AND FUEL INJECTION ON THERMOACOUSTIC INSTABILITIES IN A SUPERSONIC CAVITY
- Authors: Seleznev R.K1,2
-
Affiliations:
- Dukhov Research Institute of Automatics (VNIIA)
- Ishlinsky Institute for Problems in Mechanics RAS
- Issue: No 4 (2025)
- Pages: 50-65
- Section: Articles
- URL: https://ogarev-online.ru/1024-7084/article/view/375898
- DOI: https://doi.org/10.7868/S3034534025040051
- ID: 375898
Cite item
Abstract
This study numerically investigates thermoacoustic instabilities in a supersonic cavity-based combustor relevant to scramjet engine applications. Simulations explore the influence of cavity geometry (aft-wall angles of 22.5◦, 45◦, and 90◦, and length-to-depth ratios of 4 and 7) and fuel injection pressure (0.6 MPa to 1.8 MPa) on flow dynamics and combustion characteristics with hydrogen fuel. Non-reacting flow simulations reveal advection and acoustic oscillations within the cavity, with frequencies matching analytical predictions. The introduction of combustion suppresses low-frequency pulsations while stimulating high-frequency oscillations (15–20 kHz), with larger aft-wall angles promoting more intense vortical structures and higher frequency oscillations. Increasing fuel injection pressure leads to a non-linear response. Higher injection pressures induce a flow “choking” phenomenon and a shift towards lower frequency oscillations associated with large-scale vortex shedding, in comparison with lower injection pressures. The simulation results exhibit good agreement with experimental data, indicating the importance of both advection/acoustic oscillations and the complex interaction of flow dynamics, combustion, and fuel injection in shaping the thermoacoustic behavior of supersonic cavity-based combustors.
Keywords
About the authors
R. K Seleznev
Dukhov Research Institute of Automatics (VNIIA); Ishlinsky Institute for Problems in Mechanics RAS
Email: rkseleznev@gmail.com
Moscow, Russia; Moscow, Russia
References
- Seleznev R.K. History of scramjet propulsion development // J. Phys. Conf. Ser. 2018. V. 1009.№1. P. 012028.
- Seleznev R.K., Surzhikov S.T., Shang J.S. A review of the scramjet experimental data base // Prog. Aerosp. Sci. Elsevier Ltd, 2019. V. 106.№February. P. 43–70.
- Curran E.T. Scramjet Engines: The First Forty Years // J. Propuls. Power. 2001. V. 17.№6. P. 1138–1148.
- Liu Q., Baccarella D., and Lee T. Review of combustion stabilization for hypersonic airbreathing propulsion // Prog. Aerosp. Sci. 2020. V. 119.№217. P. 1–153.
- Wang Z.,Wang H., and Sun M. Review of cavity-stabilized combustion for scramjet applications // Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2014. V. 228.№14. P. 2718–2735.
- Micka D.J. Combustion Stabilization , Structure , and Spreading in a Laboratory Dual-Mode Scramjet Combustor by. 2010.
- Ben-Yakar A., Hanson R.K. Cavity flame-holders for ignition and flame stabilization in scramjets: An overview // J. Propuls. Power. 2001. V. 17.№4. P. 869–877.
- Choi J.Y., Yang V. Dynamics of reactive fuel-jet in scramjet combustor with a flame-holding cavity // 39th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. Exhib. 2003.№July. P. 1–7.
- Heller H., Delfs J. Cavity pressure oscillations: The generating mechanism visualized // J. Sound Vib. 1996. Vol. 196. №2. P. 248–252.
- Заугольников Н.Л., Коваль М.А., Швец А.И. Пульсации потока газа в кавернах при сверхзвуковом обтекании // Изв. АН СССР. МЖГ. 1990.№2. С. 121–127.
- Heller H., Bliss D. The physical mechanism of flow-induced pressure fluctuations in cavities and concepts for their suppression // 2nd Aeroacoustics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics. 1975. V. 2666.№1928. P. 1931–1932.
- Hankey W.L., Shang J.S. Analyses of Pressure Oscillations in an Open Cavity // AIAA J. 1980. Vol. 18. № 8. P. 892–898.
- Zhang X., Edwards J.A. An investigation of supersonic oscillatory cavity flows driven by thick shear layers // Aeronaut. J. 1990. V. 94.№940. P. 355–364.
- Vakili A.D. et al. Active control of cavity aeroacoustics in high speed flows // 33rd Aerosp. Sci. Meet. Exhib. 1995.
- Vakili A.D., Gauthier C. Control of cavity flow by upstream mass injection // AIAA 22nd Fluid Dyn. Plasma Dyn. Lasers Conf. 1991. 1991. V. 31.№1.
- Rossiter J.E., Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds // Aeronautical Research Council Reports & Memoranda. October 1964.№3438.
- Beranek B. Aerodynamically induced pressure osillations in cavities — physical mechanisms and suppression concepts // Airf. flight Dyn. Lab. 1975.
- Даньков Б.Н., Дубень А.П., Козубская Т.К. Анализ автоколебательных процессов в каверне с открытым типом течения на основе данных вихреразрешающих расчетов // Изв. РАН. МЖГ. 2023.№4. С. 156–166.
- Pandian S., Desikan S.L.N., and Niranjan S. Experimental investigation of starting characteristics and wave propagation from a shallow open cavity and its acoustic emission at supersonic speed // Phys. Fluids. 2018. V. 30. №1.
- Wang H.,Wang Z., and Sun M. Experimental study of oscillations in a scramjet combustor with cavity flameholders // Exp. Therm. Fluid Sci. Elsevier Inc. 2013. V. 45. P. 259–263.
- Doshi P.S., Ranjan R., and Gaitonde D.V. Global and local modal characteristics of supersonic open cavity flows // Phys. Fluids. AIP Publishing LLC, 2022. V. 34.№3.
- Liu Q., Gaitonde D. Acoustic response of turbulent cavity flow using resolvent analysis // Phys. of Fluids. 2021. V. 33. No. 5.
- Даньков Б.Н., Дубень А.П., Козубская Т.К. Численное моделирование возникновения автоколебательного процесса возле трехмерного обратного уступа при трансзвуковом режиме обтекания // Изв. РАН. Механика жидкости и газа. 2016.№4. P. 108–119.
- Селезнев Р.К. Анализ структуры течения в сверхзвуковом канале с каверной // Изв. РАН. МЖГ. 2024.№1. С. 83–90.
- Choi J.Y., Ma F., and Yang V. Combustion oscillations in a scramjet engine combustor with transverse fuel injection // Proc. Combust. Inst. 2005. V. 30 II. P. 2851–2858.
- Choi J.Y. et al. Detached Eddy simulation of combustion dynamics in scramjet combustors // Collect. Tech. Pap. 43rd AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. 2007. Vol. 1. July. P. 231–237.
- Ma F., Li J., and Yang V. Thermoacoustic Flow Instability in a Scramjet Combustor // AIAA Pap. 2005. July. P. 1–11.
- Lin K.C. et al. Acoustic characterization of an ethylene-fueled scramjet combustor with a cavity flameholder // J. Propuls. Power. 2010. V. 26.№6. P. 1161–1169.
- Li J. et al. A comprehensive study of combustion oscillations in a hydrocarbon-fueled scramjet engine // Collect. Tech. Pap. - 45th AIAA Aerosp. Sci. Meet. 2007. V. 15. January. P. 10170–10181.
- Суржиков С.Т. Термогазодинамика модельной камеры сгорания этилена в сверхзвуковом потоке // Изв. РАН. МЖГ. 2022.№3. С. 115-134.
- Donohue J.M. Dual-Mode Scramjet Flameholding Operability Measurements // J. Propuls. Power. 2014. V. 30. January. P. 592–603.
- Wang Y. et al. Combustion stabilization modes in a hydrogen-fueled scramjet combustor at high stagnation temperature // Acta Astronaut. Elsevier Ltd, 2018. V. 152. July. P. 112–122.
- Combustors S. et al. Diagnostic Investigation of Flow field Characteristics of. 2014. P. 1–19.
- Choubey G. et al. Numerical investigation on a typical scramjet combustor using cavity floor H2 fuel injection strategy // Acta Astronaut. IAA, 2023. V. 202. November. P. 373–385.
- He Z. et al. Effect of Fuel-Injection Distance and Cavity Rear-Wall Height on the Flameholding Characteristics in a Mach 2.52 Supersonic Flow // Aerospace. 2022. V. 9.№10.
- Sun M. et al. Unsteady supersonic combustion // Unsteady supersonic combustion. 2020. 345 p.
- Seleznev R.K. Numerical study of the flow structure in the supersonic inlet-isolator // J. Phys. Conf. Ser. 2018.V. 1009. P. 012034.
- Селезнев Р.К. Численное исследование ПВРД и ГПВРД режимов работы камеры сгорания HIFiRE-2 // Изв. РАН. МЖГ. 2022.№6. С. 64–73.
- Seleznev R.K. Validation of 3D model by the example of a supersonic inlet-isolator // J. Phys. Conf. Ser. 2018. V. 1009. P. 012031.
- Seleznev R.K. Validation of two-dimensional model by the example of a supersonic inlet-isolator // J. Phys. Conf. Ser. 2018. V. 1009. P. 012030.
- Surzhikov S. et al. Unsteady Thermo-Gasdynamic Processes in Scramjet Combustion Chamber with Periodical Input of Cold Air // 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. P. 25.
- Селезнев Р.К. Исследование структуры течения в модельном воздухозаборнике ГПВРД с поперечной подачей водородного топлива в сверхзвуковой поток // Изв. РАН. МЖГ. 2021.№3. С. 30–38.
- Surzhikov S.T. On two-dimensional numerical modeling of the Burrows - Kurkov experimental data on hydrogen combustion in a supersonic air flow usingNS/RANS equations // Phys. Kinet. Gas Dyn. 2021. V. 22.№4. P. 88–124.
- Surzhikov S.T. Results of the Use of Algebraic Models of Turbulence in the Framework of the RANS Model of Heating the Surface of a Sharp Plate in a Supersonic Flow. 2023. V. 24.№3. P. 1–49.
- Суржиков С.Т. Аэрофизика обтекания затупленного клина конечных размеров // Изв. РАН. Механика жидкости и газа. 2021.№5. P. 89–102.
- Суржиков С.Т. Теплообмен и ионизация при неравновесном обтекании затупленной пластины гиперзвуковым потоком // Изв. РАН. Механика жидкости и газа. 2021.№6. P. 109–124.
- Edwards J. et al. Low-diffusion flux-splitting methods for flows at all speeds // 13th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. V. 36.№9.
- Evans J.S., Schexnayder C.J. Influence of Chemical Kinetics and Unmixedness on Burning in Supersonic Hydrogen Flames // AIAA J. 1980. V. 18.№2. P. 188–193.
- Seleznev R., Surzhikov S. Generalized Newton Method For Solving Differential Equations of Chemical Kinetics // 44th AIAA Thermophysics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics. 2013. P. 1–17.
Supplementary files


