HYDROELASTIC WAVES IN A POROUS ICE PLATE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Within the linear theory of hydroelasticity, a two-dimensional problem of hydroelastic waves in a porous ice plate is considered. Porosity is modeled by taking into account the liquid penetration velocity proportional to the pressure gradient in the kinematic condition at the plate—liquid interface. In the initial formulation, forced oscillations caused by unsteady external pressure are considered. The solution is constructed using the Fourier transform method. A system of differential equations is obtained, the homogeneous solution of which describes time-damping hydroelastic waves. The existence of a critical value of a real-valued porosity parameter has been established, at which waves with a nonzero frequency disappear in a finite range of wave numbers. The imaginary part of the porosity affects the asymmetry of the frequency values relative to the real axis and the degree of wave attenuation. The models are compared with/without taking into account mass and hydrostatic pressure. Analytical expressions are obtained for the case of a pulse start and subsequent movement of the load at a given speed. The integrals describing the ice reaction are numerically calculated for different times.

About the authors

T. A Sibiryakova

Altai State University

Email: sibiriakova.tatiana@mail.ru
Barnaul, Russia

K. E Naydenova

Altai State University

Email: kristina-akulova00@mail.ru
Barnaul, Russia

K. A Shishmarev

Altai State University

Email: shishmarev.k@mail.ru
Barnaul, Russia

References

  1. Biot M. Theory of propagation of elastic waves in a fluid saturated porous solid. I Low frequency range // J. Acoust. Soc. Am. 1956. V. 28.№2. P. 168–178.
  2. Biot M. Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher frequency range // J. Acoust. Soc. Am. 1956. V. 28.№2. P. 179–191.
  3. Sollitt C.K., Cross R.H. Wave transmission through permeable breakwaters // Coastal Eng. 1972. V. 1. № 13. P. 1827–1846. https://doi.org/10.9753/icce.v13.99
  4. Korobkin A.A., Khabakhpasheva T.I., and Papin A.A. Waves propagating along a channel with ice cover // Eur. J. Mech. B/Fluids. 2014. V. 47. P. 166–175. https://doi.org/10.1016/j.euromechflu.2014.01.007
  5. Chwang A.T., Chan A.T. Interaction between porous media and wave motion // Annu. Rev. Fluid Mech. 1998. V. 30. №1. P. 53–84.
  6. Zavyalova K.N., Shishmarev K.A., and Korobkin A.A. The response of a poroelastic ice plate to an external pressure // J. Sib. Fed. Univ. Math. Phys. 2021. V.14.№1. P. 87–97. https://doi.org/10.17516/1997-1397-2021-14-1-87-97
  7. Shishmarev K., Serykh K., Naydenova K., and Virts R. The Response of a Porous Ice Plate to a Moving Load // AIP Conference Proceedings. 2022. V. 2528. P. 020010.
  8. Wu Q.Y., Khabakhpasheva T.I., Ni B.Y., and Korobkin A.A. Small-amplitude waves in a floating poroelastic plate forcing by vertical pitching plate // Phys. Fluids. 2023. V. 35. P. 117127. https://doi.org/10.1063/5.0175412
  9. Chen H., Gilbert R.P., and Guyenne P. Dispersion and attenuation in aporous viscoelastic model for gravity waves on an ice-covered ocean // Eur. J. Mech. B/Fluids. 2019. V. 78. P. 88–105.
  10. Petrich C., Langhorne P.J., and Sun Z.F. Modelling the interrelationships between permeability, effective porosity and total porosity in sea ice // Cold Reg. Sci. Technol. 2006. V. 44.№2. P. 131–144.
  11. Mohapatra S.C., Sahoo T., and Soares G.C. Surface gravity wave interaction with a submerged horizontal flexible porous plate // Appl. Ocean Res. 2018. V. 78. P. 61–74.
  12. Athul Krishna K.R., Abdulla K., and Karmakar D. Wave Energy Damping due to Coupled Porous Structure and Submerged Porous Plate // J. Mar. Sci. Appl. 2023. V. 22. P. 456–474.
  13. Wu J.,Wan Z., and Fang Y.Wave reflection by a vertical wall with a horizontal submerged porous plate // Ocean Eng. 1998. V. 25. P. 767–779.
  14. Evans D.V., Peter M.A. Asymptotic reflection of linear water waves by submerged horizontal porous plates // J. Eng. Math. 2009. V. 69.№2–3. P. 135–154. https://doi.org/10.1007/s10665-009-9355-2 200
  15. Kumar P.S., Sahoo T. Wave interaction with a flexible porous breakwater in a two-layer fluid // J. Eng. Math. 2006. V. 132.№9. P. 1007–1014.
  16. Ashok R., Gunasundari C., and Manam S.R. Explicit solutions of the scattering problems involving vertical flexible porous structures // J. Fluids Struct. 2020. V. 99. P. 103149.
  17. Chwang A.T., Wu J. Wave scattering by submerged porous disk // J. Eng. Mech. 1994. V. 120.№12. P. 2575–2587.
  18. Zheng S., Meylan M.H., Zhu G., Greaves D., and Iglesias G. Hydroelastic interaction between water waves and an array of circular floating porous elastic plates // J. Fluid Mech. 2020. V. 900. P. A20.
  19. Zheng S., Meylan M.H., Fan L., Greaves D., and Iglesias G.Wave scattering by a floating porous elastic plate of arbitrary shape: A semi-analytical study // J. Fluids Struct. 2020. V. 92. P. 102827.
  20. Selvan S.A., Behera H.Wave energy dissipation by a floating circular flexible porous membrane in single and two-layer fluids // Ocean Eng. 2020. V. 206. P. 107374.
  21. Barman K.K., Bora S.N. Analysis ofwave reflection,waveload, and pressure distribution due to a poro-elastic structure in a two-layer fluid over a porous sea-bed // J. Ocean Eng. Mar. Energy. 2022. V. 8. P. 331–354. https://doi.org/10.1007/s40722-022-00235-0
  22. Dalrymple A., Losada A., and Martin P.A. Reflection and transmission from porous structure under oblique wave attack // J. Fluid Mech. 1991. V. 224. P. 625–644. https://doi.org/10.1017/S0022112091001908
  23. Koley S., Mondal R., and Sahoo T. Fredholm integral equation technique for hydroelastic analysis of a floating flexible porous plate // Eur. J. Mech. B/Fluids. 2018. V. 67. P. 291–305.
  24. Liu Y., Li Y.C., Teng B., and Dong S.Wave motion over a submerged breakwater with an upper horizontal porous plate and a lower horizontal solid plate // Ocean Eng. 2008. V. 35.№16. P. 1588–1596.
  25. Chanda A., Bora S.N. Investigation of oblique flexural gravity wave scattering by two submerged thin vertical porous barriers with different porosities // J. Eng. Mech. 2021. V. 148.№2. P. 04021145.
  26. Шишмарев К.А., Хабахпашева Т.И. Нестационарные колебания ледового покрова в замороженном канале под действием движущегося внешнего давления // Вычислительные технологии. 2019. Т. 24. № 2. С. 111–128. https://doi.org/10.25743/ICT.2019.24.2.010.
  27. Стурова И.В. Плоская задача об обтекании кругового цилиндра равномерным потоком двухслойной жидкости конечной глубины // ПМТФ. 1998. Т. 39.№6(232). С. 91–101.
  28. Meylan M.H., Bennetts L.G., and Peter M.A.Water-wave scattering and energy dissipation by a floating porous elastic plate in three dimensions // Wave Motion. 2017. V. 70. P. 240–250.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).