SPECIFIC FEATURES OF SUPERSONIC FLOW PAST BODIES WITH INSTANTANEOUS ENERGY INPUT IN A GAS BUBBLE AHEAD OF THE BOW SHOCK
- Authors: Georgievskii P.Y.1, Levin V.A1,2, Sutyrin O.G1
-
Affiliations:
- Moscow State University, Institute of Mechanics
- Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Science
- Issue: No 2 (2025)
- Pages: 122-134
- Section: Articles
- URL: https://ogarev-online.ru/1024-7084/article/view/301717
- DOI: https://doi.org/10.31857/S1024708425020114
- EDN: https://elibrary.ru/FXFNEX
- ID: 301717
Cite item
Abstract
About the authors
P. Yu Georgievskii
Moscow State University, Institute of Mechanics
Email: georgi@imec.msu.ru
Moscow, Russia
V. A Levin
Moscow State University, Institute of Mechanics; Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of ScienceMoscow, Russia; Novosibirsk, Russia
O. G Sutyrin
Moscow State University, Institute of MechanicsMoscow, Russia
References
- Haas J.-F., Sturtevant B. Interaction of Weak Shock Waves with Cylindrical and Spherical Gas Inhomogeneities // J. Fluid Mechanics. 1987. V. 181. P. 41–76. https://doi.org/10.1017/S0022112087002003
- Quirk J., Karni S. On the Dynamics of a Shock-Bubble Interaction // J. Fluid Mechanics. 1996. V. 318. P. 129–163. https://doi.org/10.1017/S0022112096007069
- Zabusky N., Zeng S. Shock Cavity Implosion Morphologies and Vortical Projectile Generation in Axisymmetric Shock–Spherical Fast/Slow Bubble Interactions // J. Fluid Mechanics. 1998. V. 362. P. 327–346. https://doi.org/10.1017/S0022112097008045
- Ranjan D., Oakley J., Bonazza R. Shock-Bubble Interactions // Annual Review of Fluid Mechanics. 2011. V. 43. P. 117–140. https://doi.org/10.1146/annurev-fluid-122109-160744
- Apazidis N., Eliasson V. Shock Focusing Phenomena. Springer. 2019. 158 p. https://doi.org/10.1007/978-3-319-75866-4
- Georgievskii P.Y., Levin V.A., Sutyrin O.G. Two-dimensional self-similar flows generated by the interaction between a shock and low-density gas regions // Fluid Dynamics. 2010. V. 45. P. 281–288. https://doi.org/10.1134/S0015462810020134
- Edney B. Anomalous Heat Transfer and Pressure Distributions on Blunt Bodies at Hypersonic Speeds in the Presence of an Impinging Shock // Aeronaut. Res. Inst. of Sweden. 1968. FTA Report 115.
- Georgievskii P.Y., Levin V.A., Sutyrin O.G. Cumulation effect upon the interaction between a shock and a local gas region with elevated or lowered density // Fluid Dynamics. 2011. V. 46. P. 967–974. https://doi.org/10.1134/S0015462811060147
- Georgievskiy P.Yu., Levin V.A., Sutyrin O.G. Interaction of a Shock with Elliptical Gas Bubbles // Shock Waves. 2015. V. 25. P. 357–369. https://doi.org/10.1007/s00193-015-0557-4
- Georgievskii P.Y., Levin V.A. Unsteady interaction of a sphere with atmospheric temperature inhomogeneity at supersonic speed // Fluid Dynamics. 1993. V. 28. P. 568–574. https://doi.org/10.1007/BF01342694
- Yan H., Adelgren R., Bogushko M., Elliott G., Knight D. Laser Energy Deposition in Quiescent Air // AIAA J. 2003. V. 41. № 10. P. 1988–1995. https://doi.org/10.2514/2.1888
- Schulein A., Zheltovodov A., Pimonov E., Loginov M. Experimental and Numerical Modeling of the Bow Shock Interaction with Pulse-Heated Air Bubbles // Int. J. of Aerospace Innovations. 2010. V. 2. № 3. P. 165–187.
- Ohnishi N., Tate M., Ogino Y. Computational Study of Shock Wave Control by Pulse Energy Deposition // Shock Waves. 2012. V. 22. P. 521–531. https://doi.org/10.1007/s00193-012-0407-6
- Georgievskiy P., Levin V., Sutyrin O. Shock Focusing Effect for The Interaction of Blunt Bodies with Gas Bubbles in a Supersonic Flow // In: Ben-Dor G., Sadot O., Igra O. (eds) 30th International Symposium on Shock Waves 2. Springer, Cham. 2017. P. 1023–1027. https://doi.org/10.1007/978-3-319-44866-4_42
- Левин В.А., Марков В.В., Журавская Т.А. Прямое инициирование детонации в водородовоздушной смеси сходящейся ударной волной // Химическая физика. 2001. Т. 20. № 5. С. 26–30.
- Haehn N., Ranjan D., Weber C., Oakley J., Rothamer D., Bonazza R. Reacting shock bubble interaction // Combustion and Flame. 2012. V. 159. № 3. P. 1339–1350. https://doi.org/10.1016/j.combustflame.2011.10.015
- Diegelmann F., Tritschler V., Hickel S., Adams N. On the pressure dependence of ignition and mixing in twodimensional reactive shock-bubble interaction // Combustion and Flame. 2016. V. 163. P. 414–426. https://doi.org/10.1016/j.combustflame.2015.10.016
- Georgievskiy P.Y., Levin V.A., Sutyrin O.G. Detonation Initiation upon Interaction of a Shock Wave with a Combustible Gas Bubble of Various Densities // Combustion, Explosion, and Shock Waves. 2022. V. 58. P. 571–576. https://doi.org/10.1134/S0010508222050094
- MacCormack R.W. The Effect of Viscosity in Hypervelocity Impact Cratering // AIAA Paper 69-354. 1969. 7 p., https://doi.org/10.2514/6.1969-354 (also published in J. Spacecraft and Rockets. 2003. V. 40. № 5. P. 757–763. https://doi.org/10.2514/2.6901)
- Zhmakin A., Fursenko A. On a Monotonic Shock-Capturing Difference Scheme // USSR Computational Mathematics and Mathematical Physics. 1980. V. 20. № 4. P. 218–227. https://doi.org/10.1016/0041-5553(80)90283-9
- Liska R., Wendroff B. Comparison of several difference schemes on 1D and 2D test problems for the Euler equations // SIAM Journal on Scientific Computing. 2003. V. 25. № 3. P. 995–1017. https://doi.org/10.1137/S1064827502402120
- Физика взрыва / Под ред. Л.П. Орленко. Изд. 3-е, испр. В 2 т. Т. 1. М.: Физматлит, 2004. 832 с. ISBN 5-9221-0219-2
- Крайко А.Н. Теоретическая газовая динамика: классика и современность. М.: ТОРУС Пресс, 2010. 440 с.
Supplementary files
