Development of a SVM model for Prediction of Hydrocracking Product Yields


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this study Support Vector Machine (SVM) and Lump Kinetic Model was used to predict the hydrocracking products yield by using data which obtained from Tehran Refinery in Iran. The minimum calculated squared correlation coefficient and key parameters of SVM were used to evaluate the SVM performance. Output variables of SVM model were optimized for hydrocracking products. Kinetic parameter and mean squared error values for the 4-Lumped Kinetic models have been developed. Mean Squared Errors (MSE) of training set for Diesel, Naphtha and LPG were obtained 0.179, 0.116, and 0.174 and for testing set are 0.164, 0.148, and 0.132, respectively. It can be concluded that SVM can be used as a reliable and accurate estimation method with comparison between SVM data and Tehran refining unit. Such validated models may be regarded as valuable tools for process optimization, control, design, catalyst selection and provide a better insight into the process.

作者简介

K. Sharifi

Petroleum Refining Division, Research Institute of Petroleum Industry

编辑信件的主要联系方式.
Email: sharifikh@ripi.ir
伊朗伊斯兰共和国, Tehran, P. O. Box 1485733111

A. Safiri

Petroleum Refining Division, Research Institute of Petroleum Industry

Email: sharifikh@ripi.ir
伊朗伊斯兰共和国, Tehran, P. O. Box 1485733111

M. Asl

Petroleum Refining Division, Research Institute of Petroleum Industry; Department of Engineering, Senior Process Engineer, South Pars Gas Complex

Email: sharifikh@ripi.ir
伊朗伊斯兰共和国, Tehran, P. O. Box 1485733111; Assaluyeh, P. O. Box 311/75391

H. Adib

School of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic)

Email: sharifikh@ripi.ir
伊朗伊斯兰共和国, Tehran, 15914

B. Nonahal

Petroleum Refining Division, Research Institute of Petroleum Industry

Email: sharifikh@ripi.ir
伊朗伊斯兰共和国, Tehran, P. O. Box 1485733111

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019