GPU-Accelerated Self-Calibrating GRAPPA Operator Gridding for Rapid Reconstruction of Non-Cartesian MRI Data


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Self-calibrating GRAPPA operator gridding (SC-GROG) is a method by which non-Cartesian (NC) data in magnetic resonance imaging (MRI) are shifted to the Cartesian k-space grid locations using the parallel imaging concept of GRAPPA operator. However, gridding with SC-GROG becomes computationally expensive and leads to longer reconstruction time when mapping a large number of NC samples in MRI data to the nearest Cartesian grid locations. This work aims to accelerate the SC-GROG for radial acquisitions in MRI, using massively parallel architecture of graphics processing units (GPUs). For this purpose, a novel implementation of GPU-accelerated SC-GROG is presented, which exploits the inherent parallelism in gridding operations. The proposed method employs the look-up-table (LUT)-based optimized kernels of compute unified device architecture (CUDA), to pre-calculate all the possible combinations of 2D-gridding weight sets and uses appropriate weight sets to shift the NC signals from multi-channel receiver coils at the nearest Cartesian grid locations. In the proposed method, LUTs are implemented to avoid the race condition among the CUDA kernel threads while shifting various NC points to the same Cartesian grid location. Several experiments using 24-channel simulated phantom and (12 and 30 channel) in vivo data sets are performed to evaluate the efficacy of the proposed method in terms of computation time and reconstruction accuracy. The results show that the GPU-based implementation of SC-GROG can significantly improve the image reconstruction efficiency, typically achieving 6× to 30× speed-up (including transfer time between CPU and GPU memory) without compromising the quality of image reconstruction.

Об авторах

Omair Inam

Department of Electrical Engineering, COMSATS Institute of Information Technology

Автор, ответственный за переписку.
Email: omair_inam@comsats.edu.pk
ORCID iD: 0000-0003-0394-3533
Пакистан, Islamabad

Mahmood Qureshi

Department of Electrical Engineering, COMSATS Institute of Information Technology

Email: omair_inam@comsats.edu.pk
Пакистан, Islamabad

Shahzad Malik

Department of Electrical Engineering, COMSATS Institute of Information Technology

Email: omair_inam@comsats.edu.pk
Пакистан, Islamabad

Hammad Omer

Department of Electrical Engineering, COMSATS Institute of Information Technology

Email: omair_inam@comsats.edu.pk
Пакистан, Islamabad

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer-Verlag GmbH Austria, 2017

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».