Radiofrequency echographic multispectrometry: a promising method for the diagnosis of osteoporosis and the assessment of low-energy fracture risk

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Osteoporosis is a metabolic skeletal disease characterized by reduced bone mass, impaired microarchitecture, and an increased risk of fractures. Low-energy fractures resulting from osteoporosis lead to severe complications and patient mortality, diminish quality of life, and represent a serious medical, social, and economic burden for society. Timely diagnosis of the disease and prediction of fracture risk remain largely unresolved issues, requiring the development and implementation of new technologies. Radiofrequency echographic multispectrometry is an innovative ultrasound-based technique for diagnosing osteoporosis and assessing fracture risk. Its main advantage over other ultrasound densitometry methods is the assessment of bone status not in peripheral skeletal sites, but in the principal regions used for diagnosing the disease—the lumbar vertebrae and the proximal femur. Unlike dual-energy X-ray absorptiometry, considered the gold standard, radiofrequency echographic multispectrometry does not measure bone mineral density but instead assesses integral parameters of bone status by comparing the spectra of ultrasound signals reflected from the bone surface in patients with osteoporosis, healthy individuals, and individuals with a history of low-energy fractures. An important advantage of radiofrequency echographic multispectrometry is the portability of its equipment, which increases accessibility in remote regions and for less mobile patient groups. International studies have demonstrated a high level of concordance between radiofrequency echographic multispectrometry and dual-energy X-ray absorptiometry findings, providing the basis for recommending this new technique for clinical use in patients with osteoporosis in several countries. At the same time, the different underlying principle of the method offers potential benefits that still require further validation. This article reviews the potential applications and unresolved issues of radiofrequency echographic multispectrometry based on analysis of the current scientific data. The authors also present several clinical examples of radiofrequency echographic multispectrometry application in patients with osteoporosis and hereditary systemic diseases and discuss the outcomes of its use.

About the authors

Aleksandr F. Kolondaev

Priorov National Medical Research Center of Traumatology and Orthopedics

Author for correspondence.
Email: klndff@inbox.ru
ORCID iD: 0000-0002-4216-8800
SPIN-code: 5388-2606

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Valentina V. Makogon

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: makogon_80@mail.ru
ORCID iD: 0009-0008-9666-6961
Russian Federation, Moscow

Marina A. Dobritsyna

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: Marina.dobrycina@bk.ru
ORCID iD: 0009-0008-5572-5718
Russian Federation, Moscow

Nikolay A. Eskin

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: Cito-uchsovet@mail.ru
ORCID iD: 0000-0003-4738-7348
SPIN-code: 1215-9279

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Svetlana S. Rodionova

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: rod06@inbox.ru
ORCID iD: 0000-0002-2726-8758
SPIN-code: 3529-8052

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

References

  1. Belaya ZhE, Belova KYu, Biryukova EV, et al. Federal clinical guidelines for diagnosis, treatment and prevention of osteoporosis. Osteoporosis and Bone Diseases. 2021;24(2):4–47. do: 10.14341/osteo12930 EDN: TUONYE
  2. Dobrovolskaya OV, Toroptsova NV, Lesnyak OM. Economic aspects of complicated osteoporosis: The cost of treatment in the first year after fracture. Modern Rheumatology Journal. 2016;10(3):29–34. doi: 10.14412/1996-7012-2016-3-29-34 EDN: WXPUPJ
  3. Rodionova SS, Asi KA, Krivova AV, Samarin MA, Solomyannik IA. Low-energy fracture of the proximal femur in older age groups as a factor of excess mortality: literature review. N.N. Priorov Journal of Traumatology and Orthopedics. 2022;29(3):297–306. doi: 10.17816/vto121358 EDN: GCQOOI
  4. Lesnyak ОМ. A new method for assessing bone strength: radiofrequency echographic multispectrometry. Effective Pharmacotherapy. 2020;16(19):38–44. doi: 10.33978/2307-3586-2020-16-19-38-44 EDN: TOCCZH
  5. Sanders KM, Nicholson GC, Watts JJ, et al. Half the burden of fragility fractures in the community occur in women without osteoporosis. When is fracture prevention cost-effective? Bone. 2006;38(5):694–700. doi: 10.1016/j.bone.2005.06.004
  6. Messina C, Fusco S, Gazzotti S, et al. DXA beyond bone mineral density and the REMS technique: new insights for current radiologists practice. Radiol Med. 2024;129(8):1224–1240. doi: 10.1007/s11547-024-01843-6
  7. Zarzour F, Aftabi S, Leslie WD. Effects of femoral neck width and hip axis length on incident hip fracture risk: a registry-based cohort study. J Bone Miner Res. 2025;40(3):332–338. doi: 10.1093/jbmr/zjaf019
  8. Surowiec RK, Does MD, Nyman JS. In Vivo Assessment of Bone Quality Without X-rays. Curr Osteoporos Rep. 2024;22(1):56–68. doi: 10.1007/s11914-023-00856-w
  9. Moayyeri A, Adams JE, Adler RA, et al. Quantitative ultrasound of the heel and fracture risk assessment: an updated meta-analysis. Osteoporos Int. 2012;23(1):143–53. doi: 10.1007/s00198-011-1817-5
  10. Saadi HF, Reed RL, Carter AO, Al-Suhaili AR. Correlation of quantitative ultrasound parameters of the calcaneus with bone density of the spine and hip in women with prevalent hypovitaminosis D. J Clin Densitom. 2004;7(3):313–8. doi: 10.1385/jcd:7:3:313
  11. Thomsen K, Jepsen DB, Matzen L, et al. Is calcaneal quantitative ultrasound useful as a prescreen stratification tool for osteoporosis? Osteoporos Int. 2015;26(5):1459–75. doi: 10.1007/s00198-014-3012-y
  12. Ivanov SN. Clinical experience of using REMS-densitometry in the Russian Federation. Osteoporosis and Bone Diseases. 2022;25(3):58–59. doi: 10.14341/osteo20223 EDN: CXASXV
  13. Tomai Pitinca MD, Caffarelli C, Gonnelli S. Radiofrequency multiechographic spectrometry (REMS) technology in patients with bone artifacts. J Endocr Soc. 2021;5(Suppl 1):A249. doi: 10.1210/jendso/bvab048.507
  14. Fuggle NR, Reginster JY, Al-Daghri N, et al. Radiofrequency echographic multi spectrometry (REMS) in the diagnosis and management of osteoporosis: state of the art. Aging Clin Exp Res. 2024;36(1):135. doi: 10.1007/s40520-024-02784-w
  15. Zambito K, Kushchayeva Y, Bush A, et al. Proposed practice parameters for the performance of radiofrequency echographic multispectrometry (REMS) evaluations. Bone Jt Open. 2025;6(3):291–297. doi: 10.1302/2633-1462.63.BJO-2024-0107.R1
  16. Di Paola M, Gatti D, Viapiana O, et al. Radiofrequency echographic multispectrometry compared with dual X-ray absorptiometry for osteoporosis diagnosis on lumbar spine and femoral neck. Osteoporos Int. 2019;30(2):391–402. doi: 10.1007/s00198-018-4686-3
  17. Cortet B, Dennison E, Diez-Perez A, et al. Radiofrequency Echographic Multi Spectrometry (REMS) for the diagnosis of osteoporosis in a European multicenter clinical context. Bone. 2021;143:115786. doi: 10.1016/j.bone.2020.115786
  18. Giovanni A, Luisa BM, Carla C, et al. Bone health status evaluation in men by means of REMS technology. Aging Clin Exp Res. 2024;36(1):74. doi: 10.1007/s40520-024-02728-4
  19. Cortet B, Dennison E, Diez-Perez A, et al. Diagnosis of osteoporosis using radiofrequency echographic multispectrometry (REMS) at the lumbar spine in patients with different body mass index. Annals of the Rheumatic Diseases. 2021;80(Suppl. 1):835–836. doi: 10.1136/annrheumdis-2021-eular.2337
  20. Quarta E, Ciardo D, Ciccarese M, et al. Shot-term monitoring of denosumab effect in breast cancer patients receiving aromatase inhibitors using REMS technology on lumbar spine. Annals of the Rheumatic Diseases. 2020;79(Suppl. 1):1187–1188. doi: 10.1136/annrheumdis-2020-eular.3806
  21. Adami G, Arioli G, Bianchi G, et al. Radiofrequency echographic multi spectrometry for the prediction of incident fragility fractures: A 5-year follow-up study. Bone. 2020;134:115297. doi: 10.1016/j.bone.2020.115297
  22. Pisani P, Conversano F, Muratore M, et al. Fragility Score: a REMS-based indicator for the prediction of incident fragility fractures at 5 years. Aging Clin Exp Res. 2023;35(4):763–773. doi: 10.1007/s40520-023-02358-2
  23. Greco A, Pisani P, Conversano F, et al. Ultrasound Fragility Score: An innovative approach for the assessment of bone fragility. Measurement. 2017;101:236–242 doi: 10.1016/j.measurement.2016.01.033
  24. Icătoiu E, Vlădulescu-Trandafir AI, Groșeanu LM, et al. Radiofrequency Echographic Multi Spectrometry-A Novel Tool in the Diagnosis of Osteoporosis and Prediction of Fragility Fractures: A Systematic Review. Diagnostics (Basel). 2025;15(5):555. doi: 10.3390/diagnostics15050555
  25. Diez-Perez A, Brandi ML, Al-Daghri N, et al. Radiofrequency echographic multi-spectrometry for the in-vivo assessment of bone strength: state of the art-outcomes of an expert consensus meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Aging Clin Exp Res. 2019;31(10):1375–1389. doi: 10.1007/s40520-019-01294-4
  26. Gómez O, Talero AP, Zanchetta MB, et al. Diagnostic, treatment, and follow-up of osteoporosis-position statement of the Latin American Federation of Endocrinology. Arch Osteoporos. 2021;16(1):114. doi: 10.1007/s11657-021-00974-x
  27. Borsoi L, Armeni P, Brandi ML. Cost-minimization analysis to support the HTA of Radiofrequency Echographic Multi Spectrometry (REMS) in the diagnosis of osteoporosis. Glob Reg Health Technol Assess. 2023;10:1–11. doi: 10.33393/grhta.2023.2492
  28. Reginster JY, Silverman SL, Alokail M, Al-Daghri N, Hiligsmann M. Cost-effectiveness of radiofrequency echographic multi-spectrometry for the diagnosis of osteoporosis in the United States. JBMR Plus. 2024;9(1):138. doi: 10.1093/jbmrpl/ziae138
  29. Caffarelli C, Al Refaie A, De Vita M, et al. Radiofrequency echographic multispectrometry (REMS): an innovative technique for the assessment of bone status in young women with anorexia nervosa. Eat Weight Disord. 2022;27(8):3207–3213. doi: 10.1007/s40519-022-01450-2
  30. Degennaro VA, Brandi ML, Cagninelli G, et al. First assessment of bone mineral density in healthy pregnant women by means of Radiofrequency Echographic Multi Spectrometry (REMS) technology. Eur J Obstet Gynecol Reprod Biol. 2021;263:44–49. doi: 10.1016/j.ejogrb.2021.06.014
  31. Sharashkina NV, Naumov AV, Dudinskaya EN, et al. Expert consensus: diagnosis of osteoporosis and sarcopenia in elderly and senile patients (abridged version). Therapy. 2023;9(10):7–20. doi: 10.18565/therapy.2023.10.7–20 EDN: SVSJAE
  32. Takao S, Uotani K, Misawa H, et al. Could the Trabecular Bone Score Be a Complementary Tool for Evaluating Degenerative Lumbar Vertebrae? Acta Med Okayama. 2025;79(1):39–45. doi: 10.18926/AMO/68360
  33. Caffarelli C, Tomai Pitinca M, Al Refaie A, et al. Could radiofrequency echographic multispectrometry (REMS) overcome the overestimation in BMD by dual-energy X-ray absorptiometry (DXA) at the lumbar spine? BMC Musculoskelet Disord. 2022;23:469. doi: 10.1186/s12891-022-05430-6
  34. Caffarelli C, Al Refaie A, Mondillo C, et al. The Advantages of Radiofrequency Echographic MultiSpectrometry in the Evaluation of Bone Mineral Density in a Population with Osteoarthritis at the Lumbar Spine. Diagnostics (Basel). 2024;14(5):523. doi: 10.3390/diagnostics14050523
  35. Schwartz AV, Vittinghoff E, Bauer DC, et al.; Study of Osteoporotic Fractures (SOF) Research Group; Osteoporotic Fractures in Men (MrOS) Research Group; Health, Aging, and Body Composition (Health ABC) Research Group. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA. 2011;305(21):2184–92. doi: 10.1001/jama.2011.715
  36. Gonnelli S, Al Refaie A, Baldassini L, De Vita M, Caffarelli C. Ultrasound-Based Techniques in Diabetic Bone Disease: State of the Art and Future Perspectives. Indian J Endocrinol Metab. 2022;26(6):518–523. doi: 10.4103/ijem.ijem_347_22
  37. Napoli N, Chandran M, Pierroz DD, et al.; IOF Bone and Diabetes Working Group. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol. 2017;13(4):208–219. doi: 10.1038/nrendo.2016.153
  38. Caffarelli C, Tomai Pitinca MD, Al Refaie A, Ceccarelli E, Gonnelli S. Ability of radiofrequency echographic multispectrometry to identify osteoporosis status in elderly women with type 2 diabetes. Aging Clin Exp Res. 2022;34(1):121–127. doi: 10.1007/s40520-021-01889-w
  39. Fassio A, Andreola S, Gatti D, et al. Radiofrequency echographic multi-spectrometry and DXA for the evaluation of bone mineral density in a peritoneal dialysis setting. Aging Clin Exp Res. 2023;35(1):185–192. doi: 10.1007/s40520-022-02286-7
  40. Maïmoun L, Fattal C, Micallef JP, Peruchon E, Rabischong P. Bone loss in spinal cord-injured patients: from physiopathology to therapy. Spinal Cord. 2006;44(4):203–10. doi: 10.1038/sj.sc.3101832
  41. Lalli P, Mautino C, Busso C, et al. Reproducibility and Accuracy of the Radiofrequency Echographic Multi-Spectrometry for Femoral Mineral Density Estimation and Discriminative Power of the Femoral Fragility Score in Patients with Primary and Disuse-Related Osteoporosis. J Clin Med. 2022;11(13):3761. doi: 10.3390/jcm11133761
  42. Dzeranova LK, Shutova AS, Pigarova EA, et al. Radiofrequency echographic multi-spectrometry and prolactinoma: case report. Obesity and metabolism. 2024;21(4):431–438. doi: 10.14341/omet13197 EDN: ETRKGS
  43. Siregar MFG, Jabbar F, Effendi IH, et al. Correlation between serum vitamin D levels and bone mass density evaluated by radiofrequency echographic multi-spectrometry technology (REMS) in menopausal women. Narra J. 2024;4(1):e452. doi: 10.52225/narra.v4i1.452
  44. Tomai Pitinca MD, Fortini P, Gonnelli S, Caffarelli C. Could Radiofrequency Echographic Multi-Spectrometry (REMS) Overcome the Limitations of BMD by DXA Related to Artifacts? A Series of 3 Cases. J Ultrasound Med. 2021;40(12):2773–2777. doi: 10.1002/jum.15665
  45. Ishizu H, Shimizu T, Sakamoto Y, et al. Radiofrequency Echographic Multispectrometry (REMS) can Overcome the Effects of Structural Internal Artifacts and Evaluate Bone Fragility Accurately. Calcif Tissue Int. 2024;114(3):246–254. doi: 10.1007/s00223-023-01167-z

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Photograph of the stationary version of the radiofrequency echographic multispectrometry densitometer.

Download (348KB)
3. Fig. 2. Lumbar spine scanning procedure.

Download (267KB)
4. Fig. 3. Dual-energy X-ray absorptiometry of the femoral neck. A T-score of –2.5 SD corresponds to a reduction in bone mineral density to the level of osteoporosis.

Download (245KB)
5. Fig. 4. Radiofrequency echographic multispectrometry of the femoral neck in the same patient. The T-score value is consistent with the result of dual-energy X-ray absorptiometry.

Download (291KB)
6. Fig. 5. Radiofrequency echographic multispectrometry of the lumbar vertebrae. A T-score of –2.4 SD indicates reduced bone mass.

Download (338KB)
7. Fig. 6. Dual-energy X-ray absorptiometry of the lumbar vertebrae in the same patient showed a false result: bone mineral density corresponded to normal.

Download (264KB)

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».