Diagnosing low-grade central osteosarcoma using a neural network mathematical model: a case report and review
- Authors: Berchenko G.N.1, Morozov A.K.1, Karpenko V.Y.1, Shugaeva O.B.1, Kolondaev A.F.1, Fedosova N.V.1
-
Affiliations:
- Priorov National Medical Research Center of Traumatology and Orthopedics
- Issue: Vol 32, No 4 (2025)
- Pages: 859-870
- Section: Clinical case reports
- URL: https://ogarev-online.ru/0869-8678/article/view/361214
- DOI: https://doi.org/10.17816/vto692675
- EDN: https://elibrary.ru/IITQWR
- ID: 361214
Cite item
Abstract
BACKGROUND: Diagnosing low-grade central osteosarcoma is associated with a significant challenge because, according to radiological and histological findings, the condition closely resembles various benign lesions, most commonly being misdiagnosed as fibrous dysplasia. Convolutional neural network-based mathematical models have been successfully applied for the automated analysis of digital histopathological images, including tumor classification, regions of interest segmentation, and identification of morphological features of malignancy.
CASE DESCRIPTION: This paper presents a clinical case of a 33-year-old female patient in whom, following a pathologic fracture of the femoral diaphysis, the lesion was long misinterpreted as fibrous dysplasia. Upon re-evaluation of histological slides and repeat biopsy at the N.N. Priorov National Medical Research Center of Traumatology and Orthopedics, the diagnosis of low-grade central osteosarcoma with areas of dedifferentiation and formation of high-grade osteosarcoma foci was established. For additional diagnostic confirmation, a convolutional neural network (ResNet-101)-based mathematical model previously developed by the authors for automated detection of pathologic mitoses on digital histopathological images was applied. The model analyzed scanned slides (Leica Aperio CS2, ×400), identifying several structures with a high probability of pathologic mitoses (maximum confidence scores: 99% and 92%), consistent with the conclusions of two experienced pathologists, thereby confirming the malignant nature of the lesion.
CONCLUSION: This paper presents a clinicopathological and radiologic description of the condition, discusses diagnostic challenges and similarities with fibrous dysplasia and other benign lesions, and evaluates the potential and limitations of artificial intelligence techniques in pathology for rare low-mitotic tumors. Emphasis is placed on the role of neural network analysis as an auxiliary tool for improving reproducibility and sensitivity of mitosis detection, the need for multicenter model validation, and the implementation of stain normalization and interpretability of results for clinical application.
Full Text
##article.viewOnOriginalSite##About the authors
Gennadiy N. Berchenko
Priorov National Medical Research Center of Traumatology and Orthopedics
Author for correspondence.
Email: berchenko@cito-bone.ru
ORCID iD: 0000-0002-7920-0552
SPIN-code: 3367-2493
MD, Dr. Sci. (Medicine), Professor
Russian Federation, MoscowAlexander K. Morozov
Priorov National Medical Research Center of Traumatology and Orthopedics
Email: ak_morozov@mail.ru
ORCID iD: 0000-0002-9198-7917
SPIN-code: 4447-8306
MD, Dr. Sci. (Medicine), Professor
Russian Federation, MoscowVadim Y. Karpenko
Priorov National Medical Research Center of Traumatology and Orthopedics
Email: Doctor-kv@cito-priorov.ru
ORCID iD: 0000-0002-8280-8163
SPIN-code: 1360-8298
MD, Dr. Sci. (Medicine)
Russian Federation, MoscowOlga B. Shugaeva
Priorov National Medical Research Center of Traumatology and Orthopedics
Email: Olga.Shugaeva2013@yandex.ru
ORCID iD: 0000-0002-0778-5109
Russian Federation, Moscow
Alexander F. Kolondaev
Priorov National Medical Research Center of Traumatology and Orthopedics
Email: klndff@inbox.ru
ORCID iD: 0000-0002-4216-8800
SPIN-code: 5388-2606
MD, Cand. Sci. (Medicine)
Russian Federation, MoscowNina V. Fedosova
Priorov National Medical Research Center of Traumatology and Orthopedics
Email: hard_sign@mail.ru
ORCID iD: 0000-0002-0829-9188
SPIN-code: 5380-3194
Russian Federation, Moscow
References
- Yoshida A, Bredella MA, Gambarotti M, Sumathi VP. Low-grade central osteosarcoma. Soft Tissue and Bone Tumours. In: WHO Classification of Tumours. 5th ed. 2020:400–402.
- Unni KK, Dahlin DC, McLeod RA, Pritchard DJ. Intraosseous well-differentiated osteosarcoma. Cancer. 1977;40(3):1337–1347. doi: 10.1002/1097-0142(197709)40:3< 1337::aid-cncr2820400351> 3.0.co;2-x
- Yamashiro M, Komori A. Osteosarcoma mimicking fibrous dysplasia of the jaw. Int J Oral MaxillofacSurg. 1987;16(1):112–115. doi: 10.1016/s0901-5027(87)80040-1
- Ellis JH, Siegel CL, Martel W, Weatherbee L, Dorfman H. Radiologic features of well-differentiated osteosarcoma. AJR Am J Roentgenol. 1988;151(4):739–742. doi: 10.2214/ajr.151.4.739
- Kurt AM, Unni KK, McLeod RA, Pritchard DJ. Low-grade intraosseous osteosarcoma. Cancer. 1990;65(6):1418–1428. doi: 10.1002/1097-0142(19900315)65:6< 1418::aid-cncr2820650629> 3.0.co;2-q
- Bertoni F, Bacchini P, Fabbri N, et al. Osteosarcoma. Low-grade intraosseous-type osteosarcoma, histologically resembling parosteal osteosarcoma, fibrous dysplasia, and desmoplastic fibroma. Cancer. 1993;71(2):338–345. doi: 10.1002/1097-0142(19930115)71:2< 338::aid-cncr2820710212> 3.0.co;2-h
- Invards CY, Knuutila S. Low grade central osteosarcoma. In: Fletcher CDM, Unni KK, Mertens F, editors. World Health Organization Classification of Tumors. Pathology and Genetics of Tumors of Soft Tissue and Bone. IARC Press, Lyon, France; 2002:275–276.
- Malhas AM, Sumathi VP, James SL, et al. Low-Grade Central Osteosarcoma: A Difficult Condition to Diagnose. Sarcoma. 2012;2012:764796 doi: 10.1155/2012/764796
- Albayrak A, Bilgin G. Mitosis detection using convolutional neural network based features. In: IEEE 17th International Symposium on Computational Intelligence and Informatics (CINTI). 2016:335–340. doi: 10.1109/CINTI.2016.7846429
- Shimizu H, Nakayama KI. Artificial intelligence in oncology. Cancer Sci. 2020;111(5):1452–1460. doi: 10.1111/cas.14377
- Mathew T, Ajith B., Kini J. R., Rajan J. Deep learning-based automated mitosis detection inhistopathology images for breast cancer grading. Int J Imaging Syst Technol. 2022;32(4):1192–1208. doi: 10.1002/ima.22703
- Veta M, van Diest PJ, Jiwa M, Al-Janabi S, Pluim JPW. Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method. PLoS ONE. 2016;11(8):e0161286. doi: 10.1371/journal.pone.0161286
- Li C, Wang X, Liu W, Latecki LJ. Deep Mitosis: Mitosis Detection via Deep Detection, Verication and Segmentation Networks. Medical Image Analysis. 2018;45:121–133. doi: 10.1016/j.media.2017.12.002
- Shafi S, Parwani AV. Artificial intelligence in diagnostic pathology. Diagnostic Pathology. 2023;18:109. doi: 10.1186/s13000-023-01375-z
- Premisha P, Mauran К. Deep Learning-Based Mitosis Detection in Breast Cancer Histopathology Images: A Mapping Study. In: 2024 International Research Conference on Smart Computing and Systems Engineering (SCSE). doi: 10.1109/SCSE61872.2024.10550511
- Dorfman HD, Czerniak B. Bone tumors. 1st ed. St. Louis, Mo: Mosby; 1998:205–213.
- Mahmood T, Arsalan M, Owais M, Lee MB, Park KR. Artificial Intelligence-Based Mitosis Detection in Breast Cancer Histopathology Images Using Faster R-CNN and Deep CNNs. J Clin Med. 2020;9(3):749. doi: 10.3390/jcm9030749
- Yu S, Yao X. Advances on immunotherapy for osteosarcoma. Mol Cancer. 2024;23(11):192. doi: 10.1186/s12943-024-02105-9
- Patent RUS № 2785853 C1/ 14.12.2022. Fedosova NV, Berchenko GN, Mashoshin DV. Method for differential diagnostics of a malignant tumour and a benign process of bone tissue based on scanned images of a histological glass. Available from: https://www.elibrary.ru/item.asp?id = 49994631 (In Russ.) EDN: MRJBWK
- Berchenko GN, Fedosova NV, Kochan MG, Mashoshin DV. Neural network model development for detecting atypical mitoses in histological slides. N.N. Priorov Journal of Traumatology and Orthopedics. 2024;31(3):337–349. doi: 10.17816/vto626361 EDN: EOKZEO
- Rosaj J. Rosaj and Ackerman’s Surgical Pathology. 9th ed. China, Elsevier; 2004:2153–2157.
- Choong PF, Pritchard DJ, Rock MG, et al. Low grade central osteogenic sarcoma. A long-term followup of 20 patients. Clinical orthopaedics and related research. 1996;(322):198–206. doi: 10.1097/00003086-199601000-00025
- Andresen KJ, Sundaram M, Unni KK, Sim FH. Imaging features of low-grade central osteosarcoma of the long bones and pelvis. Skeletal radiology. 2004;33(7):373–379. doi: 10.1007/s00256-004-0796-4
- Menna C, Grimer RJ, Carter SR, et al. Low grade central osteosarcoma — difficult to diagnose, easy to treat! J Bone Joint Surgery. 2011;93-B(Suppl 1):81. doi: 10.1302/0301-620X.93BSUPP_I.0930081
- Gilg MM, Liegl B, Wibmer C, et al. Central low-grade osteosarcoma with an unusual localization in the diaphysis of a 12-year old patient. Radiol Oncol. 2013;47(2):192–196. doi: 10.2478/raon-2013-0015
- Vasiliadis HS, Arnaoutoglou C, Plakoutsis S, Doukas M, Batistatou A, Xenakis TA. Low-grade central osteosarcoma of distal femur, resembling fibrous dysplasia. World J Orthop. 2013;4(4):327–332. doi: 10.5312/wjo.v4.i4.327
- Unni KK. Dahlin’s Bone Tumors: General Aspects and Data on 11,087 Cases. 5th ed. Philadelphia, Pa: Lippincott-Raven; 1996.
- Murphey MD, Robbin MR, McRae GA, et al. The many faces of osteosarcoma. RadioGraphics. 1997;17(5):1205–1231. doi: 10.1148/radiographics.17.5.9308111
- Ostrowski ML, Johnson ME, Smith PD, et al. Low-Grade Intraosseous Osteosarcoma with Prominent Lymphoid Infiltrate. Arch Pathol Lab Med. 2000;124(6):868–871. doi: 10.5858/2000-124-0868-LGIOWP21
- Klein MJ, Siegal GP. Osteosarcoma. Anatomic and histologic variants. Am J Surg. Pathol. 2006;125(4):555–581. doi: 10.1309/UC6K-QHLD-9LV2-KENN
- Baumhoer D, Bohling TO, Cates JMM, et al. Osteosarcoma. In: WHO Classification of Tumours. 5th ed. Soft Tissue and Bone Tumours. Lyon (Franee): International Agency for Research on Cancer; 2020:403–410.
- Dahlin DC, Unni KK. Bone tumors. 4th ed. Springfield, IL: Charles C. Thomas; 1986:226–300.
- Dahlin DC, Unni KK. Osteosarcoma of bone and its important recognizable varieties. Am J Surg Pathol. 1977;1(1):61–72. doi: 10.1097/00000478-197701010-00007
- Kumar A, Varshney MK, Khan SA, Rastogi S, Safaya R. Low grade central osteosarcoma — a diagnostic dilemma. Joint Bone Spine. 2008;75(5):613–615. doi: 10.1016/j.jbspin.2007.09.016
- Dujardin F. MDM2 and CDK4 immunohistochemistry is a valuable tool in the differential diagnosis of low-grade osteosarcomas and other primary fibro-osseous lesions of the bone. Modern Pathology. 2011;24(5):624–637. doi: 10.1038/modpathol.2010.229
- Wang X, Zhang J, Yang S, et al. A generalizable and robust deep learning algorithm for mitosis detection in multicenter breast histopathological images. Med Image Anal. 2023;84:102703. doi: 10.1016/j.media.2022.102703
- Khan HU, Raza B, Shah MH, et al. SMDetector: Small mitotic detector in histopathology images using faster R-CNN with dilated convolutions in backbone model. Biomedical Signal Processing and Control. 2023;81:104414. doi: 10.1016/j.bspc.2022.104414
- Drioua WR, Benamrane N, Sais L. Breast Cancer Histopathological Images Segmentation Using Deep Learning. Sensors (Basel). 2023;23(17):7318. doi: 10.3390/s23177318
- Yücel Z, Fuat A, Pembe O. Mitotic cell detection in histopathological images of neuroendocrine tumors using improved YOLOv5 by transformer mechanism. Signal, Image and Video Processing. 2023:1–8. doi: 10.1007/s11760-023-02642-8
- Shihabuddin AR, K SB. Multi CNN based automatic detection of mitotic nuclei in breast histopathological images. Comput Biol Med. 2023;158:106815. doi: 10.1016/j.compbiomed 2023.106815
- Lakshmanan B, Anand S, Vivek Raja PS, Selvakumar B. Improved DeepMitosisNet framework for detection of mitosis in histopathology images. Multimed Tools Appl. 2023;83(14):43303–24. doi: 10.1007/s11042-023-16830-8
Supplementary files






