Genetic risk factors for musculoskeletal injuries and disorders in athletes of the national teams of the Russian Federation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: A high incidence of musculoskeletal injuries and disorders is a major challenge in elite sports. Although the contribution of genetic factors to individual risk is well recognized, the spectrum and frequency of associated genetic variants in a key population—athletes representing national teams of the Russian Federation—remain insufficiently studied, which limits the development of personalized preventive approaches. This work aimed to fill this knowledge gap.

AIM: The work aimed to determine the frequency and distribution of gene variants associated with the risk of musculoskeletal injuries and disorders among athletes of the Russian national teams.

METHODS: A cross-sectional retrospective study was conducted in athletes of national teams of the Russian Federation aged 18–40 years who provided written informed consent and underwent comprehensive medical examination (CME) in accordance with established procedures. The exclusion criterion was the absence of signed informed consent or incomplete CME data. Study groups were formed based on CME findings: the case group included athletes with a history of at least one musculoskeletal injury or disorder, whereas the control group comprised athletes without any documented musculoskeletal condition. The study was performed at the National Center for Sports Medicine (NCSM) and the Center of Sports Preparation (CSP), both under the Federal Medical-Biological Agency of Russia. Participants were enrolled, and retrospective data were collected from electronic CME databases between 2021 and 2024.

RESULTS: Among 152 athletes, 94 (61.8%) had a history of musculoskeletal injuries or disorders. Several genetic associations with outcome were identified for a number of variants. The highest odds ratios (ORs) were observed for the A allele of the IL18RAP gene (rs1420100, OR 31.81; p = 0.003) and the C allele of the FGF10 gene (rs1448037, OR 57.16; p = 0.003). Protective effects were shown for the G allele of the MIR608 gene (rs4919510, OR 0.06; p = 0.006) and the A allele of the MMP3 gene (rs650108, OR 0.10; p = 0.010). Additional significant associations were identified for variants in GDF5 (rs143383, OR 20.36; p = 0.002), VEGFA (rs1570360, OR 28.31; p = 0.003), and COL3A1 (rs1800255, OR 13.22; p = 0.007).

CONCLUSION: There were significant differences in the distribution of specific genetic variants between athletes with or without musculoskeletal injuries or disorders. The findings are consistent with the expected biological effects of these genes. The findings can be integrated into the medical and biological support system for athletes.

About the authors

Andrey V. Zholinsky

National Center of Sports Medicine

Email: ZholinskiiAV@sportfmba.ru
ORCID iD: 0000-0002-0267-9761
SPIN-code: 8111-9694

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Anastasia I. Kadykova

National Center of Sports Medicine

Email: KadykovaAI@sportfmba.ru
ORCID iD: 0000-0003-2996-6194
SPIN-code: 8764-6577
Russian Federation, Moscow

Nikita S. Gladyshev

National Center of Sports Medicine

Email: GladyshevNS@sportfmba.ru
ORCID iD: 0000-0003-2732-5676
SPIN-code: 1852-6469
Russian Federation, Moscow

Evgeny D. Kopylov

National Center of Sports Medicine

Email: KopylovED@sportfmba.ru
ORCID iD: 0009-0008-9927-5608
SPIN-code: 1118-4358
Russian Federation, Moscow

Aleksandra A. Mamchur

Center for Strategic Planning and Management of Biomedical Health Risks

Email: AMamchur@cspfmba.ru
ORCID iD: 0000-0002-6025-7663
SPIN-code: 3183-5900
Russian Federation, Moscow

Mikhail V. Terekhov

Center for Strategic Planning and Management of Biomedical Health Risks

Email: MTerekhov@cspfmba.ru
ORCID iD: 0009-0006-4549-7470
SPIN-code: 5312-2786
Russian Federation, Moscow

Aleksey A. Ivashechkin

Center for Strategic Planning and Management of Biomedical Health Risks

Author for correspondence.
Email: Aivashechkin@cspfmba.ru
ORCID iD: 0000-0002-0148-1112
SPIN-code: 3887-1351
Russian Federation, Moscow

Mikhail V. Ivanov

Center for Strategic Planning and Management of Biomedical Health Risks

Email: MIvanov@cspfmba.ru
ORCID iD: 0009-0004-7070-5636
SPIN-code: 6556-2310
Russian Federation, Moscow

Daria A. Kashtanova

Center for Strategic Planning and Management of Biomedical Health Risks

Email: DKashtanova@cspfmba.ru
ORCID iD: 0000-0001-8977-4384
SPIN-code: 8513-0512

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Vladimir S. Yudin

Center for Strategic Planning and Management of Biomedical Health Risks

Email: VYudin@cspfmba.ru
ORCID iD: 0000-0002-9199-6258
SPIN-code: 7592-9020

Cand. Sci. (Biology)

Russian Federation, Moscow

Anton A. Keskinov

Center for Strategic Planning and Management of Biomedical Health Risks

Email: Keskinov@cspfmba.ru
ORCID iD: 0000-0001-7378-983X
SPIN-code: 7178-5020

MD, Cand. Sci. (Economics), Cand. Sci. (Medicine)

Russian Federation, Moscow

Sergey M. Yudin

Center for Strategic Planning and Management of Biomedical Health Risks

Email: examlpe@address.ru
ORCID iD: 0000-0002-7942-8004
SPIN-code: 9706-5936

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Veronika I. Skvortsova

Federal Medical and Biological Agency

Email: Skvortsova@cspfmba.ru
ORCID iD: 0000-0003-2815-280X
SPIN-code: 7825-2105

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Roman V. Deev

National Center of Sports Medicine

Email: DeevRV@sportfmba.ru
ORCID iD: 0000-0001-8389-3841
SPIN-code: 2957-1687
Russian Federation, Moscow

References

  1. Prieto-González P, Martínez-Castillo JL, Fernández-Galván LM, et al. Epidemiology of sports-related injuries and associated risk factors in adolescent athletes: an injury surveillance. Int J Environ Res Public Health. 2021;18(9):4857. doi: 10.3390/ijerph18094857
  2. Dragich OA, Sidorova KA, Akhshiyatova NI, Vostrikov AA, Gorbunova TI. Analysis of sports injuries and its prevention. Uchenye zapiski universiteta imeni P.F. Lesgafta. 2023;2(216):115–118. doi: 10.34835/issn.2308-1961.2023.02.p115-118 EDN: KIALVV
  3. Ekstrand J, Spreco A, Bengtsson H, Bahr R. Injury rates decreased in men’s professional football: an 18-year prospective cohort study of almost 12,000 injuries sustained during 1.8 million hours of play. Br J Sports Med. 2021;55(19):1084–1091. doi: 10.1136/bjsports-2020-103159
  4. López-Valenciano A, Ruiz-Pérez I, Garcia-Gómez A, et al. Epidemiology of injuries in professional football: a systematic review and meta-analysis. Br J Sports Med. 2020;54(12):711–718. doi: 10.1136/bjsports-2018-099577
  5. Videbæk S, Bueno AM, Nielsen RO, Rasmussen S. Incidence of running-related injuries per 1000 h of running in different types of runners: a systematic review and meta-analysis. Sports Med. 2015;45(7):1017–1026. doi: 10.1007/s40279-015-0333-8
  6. Cattaneo M, Ramponi C, Thorborg K. What is the injury incidence and profile in professional male ice hockey? A systematic review. Int J Sports Phys Ther. 2024;19(1):1398–1409. doi: 10.26603/001c.90591
  7. Dubonosova SV. Reasons for sports discontinuation: a retrospective analysis of the physical activity in medical students. Sports Medicine: Research and Practice. 2023;13(1):21–27. doi: 10.47529/2223-2524.2023.1.3 EDN: VSLBPU
  8. Tranaeus U, Gledhill A, Johnson U, et al. 50 years of research on the psychology of sport injury: a consensus statement. Sports Med. 2024;54(7):1733–1748. doi: 10.1007/s40279-024-02045-w
  9. Turk R, Shah S, Chilton M, et al. Return to sport after anterior cruciate ligament reconstruction requires evaluation of > 2 functional tests, psychological readiness, quadriceps/hamstring strength, and time after surgery of 8 months. Arthroscopy. 2023;39(3):790–801.e6. doi: 10.1016/j.arthro.2022.08.038
  10. Picot B, Lopes R, Rauline G, Fourchet F, Hardy A. Development and validation of the Ankle-GO score for discriminating and predicting return-to-sport outcomes after lateral ankle sprain. Sports Health. 2024;16(1):47–57. doi: 10.1177/19417381231183647
  11. Zholinskiy AV, Kadykova AI, Deev RV. Modern concepts about genetic regulation of connective tissue gystophysiology and its relationship to the physical quality of «flexibility”. Genes & Cells. 2021;16(4):6–13. doi: 10.23868/202112001 EDN: LUELBE
  12. Orekhovskaya EV, Minin AV. Exercise muscle damage: the role of actn3 gene polymorphism. Sports Medicine: Research and Practice. 2020;10(2):41–47. doi: 10.17238/ISSN2223-2524.2020.2.41 EDN: SHCNQS
  13. Alvarez-Romero J, Laguette MN, Seale K, et al. Genetic variants within the COL5A1 gene are associated with ligament injuries in physically active populations from Australia, South Africa, and Japan. Eur J Sport Sci. 2023;23(2):284–293. doi: 10.1080/17461391.2021.2011426
  14. Boer CG, Hatzikotoulas K, Southam L, et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell. 2021;184(18):4784–4818.e17. doi: 10.1016/j.cell.2021.07.038
  15. de Almeida KY, Cetolin T, Marrero AR, et al. A pilot study on the prediction of non-contact muscle injuries based on ACTN3 R577X and ACE I/D polymorphisms in professional soccer athletes. Genes (Basel). 2022;13(11):2009. doi: 10.3390/genes13112009
  16. Maestro A, Del Coso J, Aguilar-Navarro M, et al. Genetic profile in genes associated with muscle injuries and injury etiology in professional soccer players. Front Genet. 2022;13:1035899. doi: 10.3389/fgene.2022.1035899
  17. Guo R, Aizezi A, Fan Y, et al. Association between matrix metalloproteinase-3 gene polymorphisms and tendon-ligament injuries: evidence from a meta-analysis. BMC Sports Sci Med Rehabil. 2022;14(1):26. doi: 10.1186/s13102-022-00421-5
  18. Gibbon A, Hobbs H, van der Merwe W, et al. The MMP3 gene in musculoskeletal soft tissue injury risk profiling: a study in two independent sample groups. J Sports Sci. 2017;35(7):655–662. doi: 10.1080/02640414.2016.1183806
  19. Figueiredo EA, Loyola LC, Belangero PS, et al. Rotator cuff tear susceptibility is associated with variants in genes involved in tendon extracellular matrix homeostasis. J Orthop Res. 2020;38(1):192–201. doi: 10.1002/jor.24455
  20. Sherbak SG, Makarenko SV, Shneider OV, Kamilova TA, Golota AS. Regenerative rehabilitation in injuries of tendons. Physical and Rehabilitation Medicine, Medical Rehabilitation. 2021;3(2):192–206. doi: 10.36425/rehab70760 EDN: FGSGHR
  21. Casos E, Maestro A, Sabiers CC, et al. Whole-exome sequencing analysis in twin sibling males with an anterior cruciate ligament rupture. Injury. 2017;48(1):223–227. doi: 10.1016/S0020-1383(16)30605-2
  22. Feldmann D, Bope CD, Patricios J, et al. A whole genome sequencing approach to anterior cruciate ligament rupture — a twin study in two unrelated families. PLoS One. 2022;17(10):e0274354. doi: 10.1371/journal.pone.0274354
  23. Massidda M, Flore L, Cugia P, et al. Association between total genotype score and muscle injuries in top-level football players: a pilot study. Sports Med Open. 2024;10(1):22. doi: 10.1186/s40798-024-00682-z
  24. Wang YP, Di WJ, Yang S, et al. The association of growth differentiation factor 5 rs143383 gene polymorphism with osteoarthritis: a systematic review and meta-analysis. J Orthop Surg Res. 2023;18(1):763. doi: 10.1186/s13018-023-04245-y
  25. Peng L, Jin S, Lu J, et al. Association between growth differentiation factor 5 rs143383 genetic polymorphism and the risk of knee osteoarthritis among Caucasian but not Asian: a meta-analysis. Arthritis Res Ther. 2020;22(1):215. doi: 10.1186/s13075-020-02306-9
  26. Rumyantseva VA, Boranov EV, Rogozhina YA, et al. Systemic collagenopathy: vascular type of Ehlers-Danlos syndrome with successful bilateral sequential thoracoscopic pleurectomy. Clinical and experimental surgery. Petrovsky journal. 2017;(4):51–58. doi: 10.24411/2308-1198-2017-00007 EDN: ZXHERX
  27. Leźnicka K, Żyżniewska-Banaszak E, Gębska M, et al. Interactions between gene variants within the COL1A1 and COL5A1 genes and musculoskeletal injuries in physically active Caucasian. Genes (Basel). 2021;12(7):1056. doi: 10.3390/genes12071056
  28. Jacob Y, Anderton RS, Cochrane Wilkie JL, et al. Genetic variants within NOGGIN, COL1A1, COL5A1, and IGF2 are associated with musculoskeletal injuries in elite male Australian Football League players: a preliminary study. Sports Med Open. 2022;8(1):126. doi: 10.1186/s40798-022-00522-y
  29. Guo R, Aizezi A, Fan Y, et al. Association between matrix metalloproteinase-3 gene polymorphisms and tendon-ligament injuries: evidence from a meta-analysis. BMC Sports Sci Med Rehabil. 2022;14(1):26. doi: 10.1186/s13102-022-00421-5
  30. Jelinsky SA, Rodeo SA, Li J, et al. Regulation of gene expression in human tendinopathy. BMC Musculoskelet Disord. 2011;12:86. doi: 10.1186/1471-2474-12-86
  31. Chen Z, Chen P, Zheng M, et al. Challenges and perspectives of tendon-derived cell therapy for tendinopathy: from bench to bedside. Stem Cell Res Ther. 2022;13(1):444. doi: 10.1186/s13287-022-03113-6
  32. Luo S, Li W, Wu W, et al. Elevated expression of MMP8 and MMP9 contributes to diabetic osteoarthritis progression in a rat model. J Orthop Surg Res. 2021;16(1):64. doi: 10.1186/s13018-021-02208-9
  33. Omair A, Lie BA, Reikeras O, Brox JI. An association study of interleukin 18 receptor genes (IL18R1 and IL18RAP) in lumbar disc degeneration. Open Orthop J. 2012;6:164–171. doi: 10.2174/1874325001206010164
  34. Webborn N, Williams A, McNamee M, et al. Direct-to-consumer genetic testing for predicting sports performance and talent identification: consensus statement. Br J Sports Med. 2015;49(23):1486–1491. doi: 10.1136/bjsports-2015-095343
  35. Camporesi S, McNamee MJ. Ethics, genetic testing, and athletic talent: children’s best interests, and the right to an open (athletic) future. Physiol Genomics. 2016;48(3):191–195. doi: 10.1152/physiolgenomics.00104.2015

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Number of musculoskeletal injuries and disorders by sex and sport type.

Download (417KB)
3. Fig. 2. Prevalence of musculoskeletal injuries and disorders among athletes. MSS, musculoskeletal system.

Download (107KB)
4. Fig. 3. Distribution of genetic variant frequencies among athletes with and without musculoskeletal injuries and disorders. MSS, musculoskeletal system.

Download (132KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».