Results of a six-year monitoring of antimicrobial resistance in major pathogens of fracture-related infection of long bones and chronic osteomyelitis following transosseous osteosynthesis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The growing resistance of pathogenic strains involved in fracture-related infection substantially limits the effectiveness of antibiotic therapy and represents a serious public health concern.

AIM: This study aimed to determine and assess trends in antimicrobial resistance of the major pathogens isolated from patients with long bone fracture-related infection and chronic osteomyelitis, as its sequela, treated with transosseous osteosynthesis between 2019 and 2024.

METHODS: An observational, single-center, retrospective analysis of antimicrobial resistance patterns of the major pathogens isolated from 247 patients treated between 2019 and 2024 was performed. The obtained data were statistically analyzed using Pearson’s χ2 test.

RESULTS: More than 60% of methicillin-susceptible Staphylococcus aureus (MSSA) and 70% of methicillin-susceptible Staphylococcus epidermidis (MSSE) and Corynebacterium strains were resistant to fluoroquinolones. Methicillin-resistant Staphylococcus epidermidis (MRSE) demonstrated stable susceptibility to vancomycin, teicoplanin, and linezolid. Enterococcus faecalis remained susceptible to ampicillin (94.4%), vancomycin, linezolid, and tigecycline (100%). Multidrug-resistant strains predominated among nonfermenting Gram-negative bacteria and Klebsiella pneumoniae, whereas extended-spectrum β-lactamase producers were most common among Enterobacteriaceae. In 2024, pandrug–resistant Gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA) resistant to vancomycin were identified for the first time. Multidrug resistance was mainly observed in Gram-negative bacteria, particularly among nonfermenters such as Acinetobacter baumannii and Pseudomonas aeruginosa. Gram-positive pathogens, especially MSSE, remained highly susceptible to the tested antibiotics.

CONCLUSION: Combination therapy with vancomycin and meropenem remains effective due to the high susceptibility of Gram-positive bacteria to vancomycin and Enterobacteriaceae to carbapenems. However, the increasing resistance among Gram-negative pathogens will require revision of the current treatment regimen in the near future.

About the authors

Archil V. Tsiskarashvili

Priorov National Medical Research Center of Traumatology and Orthopedics

Author for correspondence.
Email: armed05@mail.ru
ORCID iD: 0000-0003-1721-282X
SPIN-code: 2312-1002

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Regina E. Melikova

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: regina-melikova@mail.ru
ORCID iD: 0000-0002-5283-7078
SPIN-code: 8288-0256

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Anton G. Nazarenko

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: nazarenkoag@cito-priorov.ru
ORCID iD: 0000-0003-1314-2887
SPIN-code: 1402-5186

MD, Dr. Sci. (Medicine), Professor, Corresponding Member of the Russian Academy of Sciences

Russian Federation, Moscow

Vitaly A. Otdelenov

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: vitotd@yandex.ru
ORCID iD: 0000-0003-0623-7263
SPIN-code: 8357-5770

MD, Сand. Sci. (Medicine)

Russian Federation, Moscow

Natalia K. Vabishchevich

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: cito-vnk@mail.ru
ORCID iD: 0009-0008-3684-0841
SPIN-code: 1566-9013

MD, Сand. Sci. (Medicine)

Russian Federation, Moscow

References

  1. Hellebrekers P, Leenen LP, Hoekstra M, Hietbrink F. Effect of a standardized treatment regime for infection after osteosynthesis. J Orthop Surg Res. 2017;12(1):41. doi: 10.1186/s13018-017-0535-x
  2. Hellebrekers P, Verhofstad MHJ, Leenen LPH, et al. The effect of early broad-spectrum versus delayed narrow-spectrum antibiotic therapy on the primary cure rate of acute infection after osteosynthesis. Eur J Trauma Emerg Surg. 2020;46(6):1341–1350. doi: 10.1007/s00068-019-01182-6
  3. Garrigós C, Rosso-Fernández CM, Borreguero I, et al.; DURATIOM team. Efficacy and safety of different antimicrobial DURATions for the treatment of Infections associated with Osteosynthesis Material implanted after long bone fractures (DURATIOM): Protocol for a randomized, pragmatic trial. PLoS One. 2023 May;18(5):e0286094. doi: 10.1371/journal.pone.0286094
  4. Giordano V, Giannoudis PV. Biofilm Formation, Antibiotic Resistance, and Infection (BARI): The Triangle of Death. J Clin Med. 2024;13(19):5779. doi: 10.3390/jcm13195779
  5. Fantoni M, Taccari F, Giovannenze F. Systemic antibiotic treatment of chronic osteomyelitis in adults. Eur Rev Med Pharmacol Sci. 2019;23(2 suppl):258–270. doi: 10.26355/eurrev_201904_17500
  6. Depypere M, Kuehl R, Metsemakers WJ, et al.; Fracture-Related Infection (FRI) Consensus Group. Recommendations for Systemic Antimicrobial Therapy in Fracture-Related Infection: A Consensus From an International Expert Group. J Orthop Trauma. 2020;34(1):30–41. doi: 10.1097/BOT.0000000000001626
  7. Gostev VV, Punchenko OE, Sidorenko SV. The current view on beta-lactam resistance in Staphylococcus aureus. Clinical Microbiology and Antimicrobial Chemotherapy. 2021;23(4):375–87. doi: 10.36488/cmac.2021.4.375-387 EDN: TXTCCO
  8. Zhang Z, Liu P, Wang W, et al. Epidemiology and Drug Resistance of Fracture-Related Infection of the Long Bones of the Extremities: A Retrospective Study at the Largest Trauma Center in Southwest China. Front Microbiol. 2022;13:923735. doi: 10.3389/fmicb.2022.923735
  9. Tsilika M, Ntziora F, Giannitsioti E. Antimicrobial Treatment Options for Multidrug Resistant Gram-Negative Pathogens in Bone and Joint Infections. Pathogens. 2025;14(2):130. doi: 10.3390/pathogens14020130
  10. Pompilio A, Scribano D, Sarshar M, et al. Gram-Negative Bacteria Holding Together in a Biofilm: The Acinetobacter baumannii Way. Microorganisms. 2021;9(7):1353. doi: 10.3390/microorganisms9071353
  11. Unsworth A, Young B, Scarborough M, McNally M. A Comparison of Causative Pathogens in Bone and Prosthetic Joint Infections: Implications for Antimicrobial Therapy. Antibiotics (Basel). 2024;13(12):1125. doi: 10.3390/antibiotics13121125
  12. Baertl S, Walter N, Engelstaedter U, et al. What Is the Most Effective Empirical Antibiotic Treatment for Early, Delayed, and Late Fracture-Related Infections? Antibiotics (Basel). 2022 Feb 22;11(3):287. doi: 10.3390/antibiotics11030287
  13. Wu Z, Chan B, Low J, et al. Microbial resistance to nanotechnologies: An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants. Bioact Mater. 2022;16:249–270. doi: 10.1016/j.bioactmat.2022.02.014
  14. GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet. 2024;404(10459):1199–1226. doi: 10.1016/S0140-6736(24)01867-1
  15. Metsemakers WJ, Morgenstern M, Senneville E, et al.; Fracture-Related Infection (FRI) group. General treatment principles for fracture-related infection: recommendations from an international expert group. Arch Orthop Trauma Surg. 2020;140(8):1013–1027. doi: 10.1007/s00402-019-03287-4
  16. Jacobs MMJ, Holla M, van Wageningen B, Hermans E, Veerman K. Mismatch Rate of Empirical Antimicrobial Treatment in Fracture-Related Infections. J Orthop Trauma. 2024;38(5):240–246. doi: 10.1097/BOT.0000000000002782
  17. Shodipo OM, Arojuraye AS, Ramat AM, et al. Is routine Gram-negative antibiotic coverage required for optimum antibiotic prophylaxis in open reduction and internal fixation of fractures? A multicenter analysis of bacteria pathogens in fracture-related infections. Musculoskelet Surg. 2025;109(3):339–344. doi: 10.1007/s12306-025-00883-z
  18. Tissingh EK, Marais L, Loro A, et al. Management of fracture-related infection in low resource settings: how applicable are the current consensus guidelines? EFORT Open Rev. 2022;7(6):422–432. doi: 10.1530/EOR-22-0031
  19. Tsiskarashvili AV, Melikova RE, Nazarenko AG. Microbiological Monitoring of Major Pathogens in Infected Long Bone Fractures Treated With External Osteosynthesis. N.N. Priorov Journal of Traumatology and Orthopedics. 2025;32(2):457−475. doi: 10.17816/vto655983 EDN: IIYFKQ
  20. Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC), Smolensk State Medical University. Russian national guidelines for the determination of microorganism susceptibility to antimicrobial agents (Version 2024-02). Smolensk: IACMAC; 2024 [In Russ.]
  21. Fonkoue L, Tissingh EK, Ngouateu MT, et al. The Microbiological Profile and Antibiotic Susceptibility of Fracture Related Infections in a Low Resource Setting Differ from High Resource Settings: A Cohort Study from Cameroon. Antibiotics (Basel). 2024;13(3):236. doi: 10.3390/antibiotics13030236
  22. Pfang BG, García-Cañete J, García-Lasheras J, et al. Orthopedic Implant-Associated Infection by Multidrug Resistant Enterobacteriaceae. J Clin Med. 2019;8(2):220. doi: 10.3390/jcm8020220
  23. Andreeva IV, Stetsyuk OU, Kozlov RS. Tigecycline: prospects of application in clinical practice. Clinical microbiology and antimicrobial chemotherapy. 2010;12(2):127–145. EDN: MNJYFL
  24. Moffatt JH, Harper M, Boyce JD. Mechanisms of Polymyxin Resistance. Adv Exp Med Biol. 2019;1145:55–71. doi: 10.1007/978-3-030-16373-0_5
  25. Jeannot K, Bolard A, Plésiat P. Resistance to polymyxins in Gram-negative organisms. Int J Antimicrob Agents. 2017;49(5):526–535. doi: 10.1016/j.ijantimicag.2016.11.029
  26. Depypere M, Sliepen J, Onsea J, et al. The Microbiological Etiology of Fracture-Related Infection. Front Cell Infect Microbiol. 2022;12:934485. doi: 10.3389/fcimb.2022.934485
  27. Sudduth JD, Moss JA, Spitler CA, et al. Open Fractures: Are We Still Treating the Same Types of Infections? Surg Infect (Larchmt). 2020;21(9):766–772. doi: 10.1089/sur.2019.140
  28. Ma T, Lyu J, Ma J, et al. Comparative analysis of pathogen distribution in patients with fracture-related infection and periprosthetic joint infection: a retrospective study. BMC Musculoskelet Disord. 2023;24(1):123. doi: 10.1186/s12891-023-06210-6
  29. Rupp M, Baertl S, Walter N, et al. Is There a Difference in Microbiological Epidemiology and Effective Empiric Antimicrobial Therapy Comparing Fracture-Related Infection and Periprosthetic Joint Infection? A Retrospective Comparative Study. Antibiotics (Basel). 2021;10(8):921. doi: 10.3390/antibiotics10080921
  30. Abdelmoktader А, Talal El Far А. Methods of ESBLs Detection in Clinical Microbiology Lab. Virol Immunol J. 2019;3(4):000222

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Microbiological spectrum of major pathogens in fracture-related infection and chronic osteomyelitis of long bones.

Download (111KB)
3. Fig. 2. Yearly trends in the frequency of major pathogen identification in fracture-related infection and chronic osteomyelitis of long bones.

Download (174KB)
4. Fig. 3. Overall trends in the identification of resistant Gram-negative pathogens over the analyzed time period (n = 62). ESBL, extended-spectrum β-lactamases.

Download (101KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».