Results of a six-year monitoring of antimicrobial resistance in major pathogens of fracture-related infection of long bones and chronic osteomyelitis following transosseous osteosynthesis
- Authors: Tsiskarashvili A.V.1, Melikova R.E.1, Nazarenko A.G.1, Otdelenov V.A.1, Vabishchevich N.K.1
-
Affiliations:
- Priorov National Medical Research Center of Traumatology and Orthopedics
- Issue: Vol 32, No 4 (2025)
- Pages: 799-816
- Section: Original study articles
- URL: https://ogarev-online.ru/0869-8678/article/view/361210
- DOI: https://doi.org/10.17816/vto683059
- EDN: https://elibrary.ru/JAKGNW
- ID: 361210
Cite item
Abstract
BACKGROUND: The growing resistance of pathogenic strains involved in fracture-related infection substantially limits the effectiveness of antibiotic therapy and represents a serious public health concern.
AIM: This study aimed to determine and assess trends in antimicrobial resistance of the major pathogens isolated from patients with long bone fracture-related infection and chronic osteomyelitis, as its sequela, treated with transosseous osteosynthesis between 2019 and 2024.
METHODS: An observational, single-center, retrospective analysis of antimicrobial resistance patterns of the major pathogens isolated from 247 patients treated between 2019 and 2024 was performed. The obtained data were statistically analyzed using Pearson’s χ2 test.
RESULTS: More than 60% of methicillin-susceptible Staphylococcus aureus (MSSA) and 70% of methicillin-susceptible Staphylococcus epidermidis (MSSE) and Corynebacterium strains were resistant to fluoroquinolones. Methicillin-resistant Staphylococcus epidermidis (MRSE) demonstrated stable susceptibility to vancomycin, teicoplanin, and linezolid. Enterococcus faecalis remained susceptible to ampicillin (94.4%), vancomycin, linezolid, and tigecycline (100%). Multidrug-resistant strains predominated among nonfermenting Gram-negative bacteria and Klebsiella pneumoniae, whereas extended-spectrum β-lactamase producers were most common among Enterobacteriaceae. In 2024, pandrug–resistant Gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA) resistant to vancomycin were identified for the first time. Multidrug resistance was mainly observed in Gram-negative bacteria, particularly among nonfermenters such as Acinetobacter baumannii and Pseudomonas aeruginosa. Gram-positive pathogens, especially MSSE, remained highly susceptible to the tested antibiotics.
CONCLUSION: Combination therapy with vancomycin and meropenem remains effective due to the high susceptibility of Gram-positive bacteria to vancomycin and Enterobacteriaceae to carbapenems. However, the increasing resistance among Gram-negative pathogens will require revision of the current treatment regimen in the near future.
Full Text
##article.viewOnOriginalSite##About the authors
Archil V. Tsiskarashvili
Priorov National Medical Research Center of Traumatology and Orthopedics
Author for correspondence.
Email: armed05@mail.ru
ORCID iD: 0000-0003-1721-282X
SPIN-code: 2312-1002
MD, Cand. Sci. (Medicine)
Russian Federation, MoscowRegina E. Melikova
Priorov National Medical Research Center of Traumatology and Orthopedics
Email: regina-melikova@mail.ru
ORCID iD: 0000-0002-5283-7078
SPIN-code: 8288-0256
MD, Cand. Sci. (Medicine)
Russian Federation, MoscowAnton G. Nazarenko
Priorov National Medical Research Center of Traumatology and Orthopedics
Email: nazarenkoag@cito-priorov.ru
ORCID iD: 0000-0003-1314-2887
SPIN-code: 1402-5186
MD, Dr. Sci. (Medicine), Professor, Corresponding Member of the Russian Academy of Sciences
Russian Federation, MoscowVitaly A. Otdelenov
Priorov National Medical Research Center of Traumatology and Orthopedics
Email: vitotd@yandex.ru
ORCID iD: 0000-0003-0623-7263
SPIN-code: 8357-5770
MD, Сand. Sci. (Medicine)
Russian Federation, MoscowNatalia K. Vabishchevich
Priorov National Medical Research Center of Traumatology and Orthopedics
Email: cito-vnk@mail.ru
ORCID iD: 0009-0008-3684-0841
SPIN-code: 1566-9013
MD, Сand. Sci. (Medicine)
Russian Federation, MoscowReferences
- Hellebrekers P, Leenen LP, Hoekstra M, Hietbrink F. Effect of a standardized treatment regime for infection after osteosynthesis. J Orthop Surg Res. 2017;12(1):41. doi: 10.1186/s13018-017-0535-x
- Hellebrekers P, Verhofstad MHJ, Leenen LPH, et al. The effect of early broad-spectrum versus delayed narrow-spectrum antibiotic therapy on the primary cure rate of acute infection after osteosynthesis. Eur J Trauma Emerg Surg. 2020;46(6):1341–1350. doi: 10.1007/s00068-019-01182-6
- Garrigós C, Rosso-Fernández CM, Borreguero I, et al.; DURATIOM team. Efficacy and safety of different antimicrobial DURATions for the treatment of Infections associated with Osteosynthesis Material implanted after long bone fractures (DURATIOM): Protocol for a randomized, pragmatic trial. PLoS One. 2023 May;18(5):e0286094. doi: 10.1371/journal.pone.0286094
- Giordano V, Giannoudis PV. Biofilm Formation, Antibiotic Resistance, and Infection (BARI): The Triangle of Death. J Clin Med. 2024;13(19):5779. doi: 10.3390/jcm13195779
- Fantoni M, Taccari F, Giovannenze F. Systemic antibiotic treatment of chronic osteomyelitis in adults. Eur Rev Med Pharmacol Sci. 2019;23(2 suppl):258–270. doi: 10.26355/eurrev_201904_17500
- Depypere M, Kuehl R, Metsemakers WJ, et al.; Fracture-Related Infection (FRI) Consensus Group. Recommendations for Systemic Antimicrobial Therapy in Fracture-Related Infection: A Consensus From an International Expert Group. J Orthop Trauma. 2020;34(1):30–41. doi: 10.1097/BOT.0000000000001626
- Gostev VV, Punchenko OE, Sidorenko SV. The current view on beta-lactam resistance in Staphylococcus aureus. Clinical Microbiology and Antimicrobial Chemotherapy. 2021;23(4):375–87. doi: 10.36488/cmac.2021.4.375-387 EDN: TXTCCO
- Zhang Z, Liu P, Wang W, et al. Epidemiology and Drug Resistance of Fracture-Related Infection of the Long Bones of the Extremities: A Retrospective Study at the Largest Trauma Center in Southwest China. Front Microbiol. 2022;13:923735. doi: 10.3389/fmicb.2022.923735
- Tsilika M, Ntziora F, Giannitsioti E. Antimicrobial Treatment Options for Multidrug Resistant Gram-Negative Pathogens in Bone and Joint Infections. Pathogens. 2025;14(2):130. doi: 10.3390/pathogens14020130
- Pompilio A, Scribano D, Sarshar M, et al. Gram-Negative Bacteria Holding Together in a Biofilm: The Acinetobacter baumannii Way. Microorganisms. 2021;9(7):1353. doi: 10.3390/microorganisms9071353
- Unsworth A, Young B, Scarborough M, McNally M. A Comparison of Causative Pathogens in Bone and Prosthetic Joint Infections: Implications for Antimicrobial Therapy. Antibiotics (Basel). 2024;13(12):1125. doi: 10.3390/antibiotics13121125
- Baertl S, Walter N, Engelstaedter U, et al. What Is the Most Effective Empirical Antibiotic Treatment for Early, Delayed, and Late Fracture-Related Infections? Antibiotics (Basel). 2022 Feb 22;11(3):287. doi: 10.3390/antibiotics11030287
- Wu Z, Chan B, Low J, et al. Microbial resistance to nanotechnologies: An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants. Bioact Mater. 2022;16:249–270. doi: 10.1016/j.bioactmat.2022.02.014
- GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet. 2024;404(10459):1199–1226. doi: 10.1016/S0140-6736(24)01867-1
- Metsemakers WJ, Morgenstern M, Senneville E, et al.; Fracture-Related Infection (FRI) group. General treatment principles for fracture-related infection: recommendations from an international expert group. Arch Orthop Trauma Surg. 2020;140(8):1013–1027. doi: 10.1007/s00402-019-03287-4
- Jacobs MMJ, Holla M, van Wageningen B, Hermans E, Veerman K. Mismatch Rate of Empirical Antimicrobial Treatment in Fracture-Related Infections. J Orthop Trauma. 2024;38(5):240–246. doi: 10.1097/BOT.0000000000002782
- Shodipo OM, Arojuraye AS, Ramat AM, et al. Is routine Gram-negative antibiotic coverage required for optimum antibiotic prophylaxis in open reduction and internal fixation of fractures? A multicenter analysis of bacteria pathogens in fracture-related infections. Musculoskelet Surg. 2025;109(3):339–344. doi: 10.1007/s12306-025-00883-z
- Tissingh EK, Marais L, Loro A, et al. Management of fracture-related infection in low resource settings: how applicable are the current consensus guidelines? EFORT Open Rev. 2022;7(6):422–432. doi: 10.1530/EOR-22-0031
- Tsiskarashvili AV, Melikova RE, Nazarenko AG. Microbiological Monitoring of Major Pathogens in Infected Long Bone Fractures Treated With External Osteosynthesis. N.N. Priorov Journal of Traumatology and Orthopedics. 2025;32(2):457−475. doi: 10.17816/vto655983 EDN: IIYFKQ
- Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC), Smolensk State Medical University. Russian national guidelines for the determination of microorganism susceptibility to antimicrobial agents (Version 2024-02). Smolensk: IACMAC; 2024 [In Russ.]
- Fonkoue L, Tissingh EK, Ngouateu MT, et al. The Microbiological Profile and Antibiotic Susceptibility of Fracture Related Infections in a Low Resource Setting Differ from High Resource Settings: A Cohort Study from Cameroon. Antibiotics (Basel). 2024;13(3):236. doi: 10.3390/antibiotics13030236
- Pfang BG, García-Cañete J, García-Lasheras J, et al. Orthopedic Implant-Associated Infection by Multidrug Resistant Enterobacteriaceae. J Clin Med. 2019;8(2):220. doi: 10.3390/jcm8020220
- Andreeva IV, Stetsyuk OU, Kozlov RS. Tigecycline: prospects of application in clinical practice. Clinical microbiology and antimicrobial chemotherapy. 2010;12(2):127–145. EDN: MNJYFL
- Moffatt JH, Harper M, Boyce JD. Mechanisms of Polymyxin Resistance. Adv Exp Med Biol. 2019;1145:55–71. doi: 10.1007/978-3-030-16373-0_5
- Jeannot K, Bolard A, Plésiat P. Resistance to polymyxins in Gram-negative organisms. Int J Antimicrob Agents. 2017;49(5):526–535. doi: 10.1016/j.ijantimicag.2016.11.029
- Depypere M, Sliepen J, Onsea J, et al. The Microbiological Etiology of Fracture-Related Infection. Front Cell Infect Microbiol. 2022;12:934485. doi: 10.3389/fcimb.2022.934485
- Sudduth JD, Moss JA, Spitler CA, et al. Open Fractures: Are We Still Treating the Same Types of Infections? Surg Infect (Larchmt). 2020;21(9):766–772. doi: 10.1089/sur.2019.140
- Ma T, Lyu J, Ma J, et al. Comparative analysis of pathogen distribution in patients with fracture-related infection and periprosthetic joint infection: a retrospective study. BMC Musculoskelet Disord. 2023;24(1):123. doi: 10.1186/s12891-023-06210-6
- Rupp M, Baertl S, Walter N, et al. Is There a Difference in Microbiological Epidemiology and Effective Empiric Antimicrobial Therapy Comparing Fracture-Related Infection and Periprosthetic Joint Infection? A Retrospective Comparative Study. Antibiotics (Basel). 2021;10(8):921. doi: 10.3390/antibiotics10080921
- Abdelmoktader А, Talal El Far А. Methods of ESBLs Detection in Clinical Microbiology Lab. Virol Immunol J. 2019;3(4):000222
Supplementary files




