Reverse shoulder arthroplasty for glenoid deformities: a retrospective cohort study

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Reverse shoulder arthroplasty is increasingly becoming the standard surgical treatment for shoulder joint conditions. To our knowledge, in cases of glenoid deformities, lateralization of the scapular component of the shoulder prosthesis plays an important role. Several methods are used to achieve the scapular component lateralization, one of which is the use of a patient-specific metallic augment. We present the treatment outcomes of patients who underwent standard reverse shoulder arthroplasty without glenoid modeling versus those treated with a patient-specific metallic augment.

AIM: The work aimed to evaluate the outcomes of reverse shoulder arthroplasty performed using the standard technique and with a patient-specific metallic augment in patients with glenoid deformities.

METHODS: It was a single-center retrospective cohort study. Between 2019 and 2024, 62 patients with scapulohumeral osteoarthritis and associated glenoid deformities were treated in the Department of Traumatology and Orthopedics No. 1 of the N.N. Priorov National Medical Research Center of Traumatology and Orthopedics (Moscow). A total of 31 patients underwent standard reverse shoulder arthroplasty, whereas the remaining 31 received implantation of a patient-specific metallic augment manufactured using additive technologies. Demographic and radiographic data, surgical technique, operative time, blood loss, and complications were recorded. Patients were followed up at 6 weeks, 3 months, 6 months, and 1 year postoperatively. Functional outcomes were assessed using the ASES, DASH, UCLA, Constant, and VAS scores.

RESULTS: Of the 62 patients, 19 (30.64%) were men and 43 (69.36%) were women. Glenoid deformities were classified according to Walch as B1 in 31, B2 in 19, and B3 in 12 patients. The abduction angle was 120.6 ± 6.9° at the first postoperative assessment and 173.2 ± 6.8° at the final follow-up, compared with 83.4 ± 12.8° preoperatively (p < 0.05). In the patient-specific metallic augment group, compared with the control group, postoperative abduction, flexion, and external rotation improved, and the time to achieve full range of motion of the shoulder joint was reduced.

CONCLUSION: Both techniques resulted in comparable improvements in functional outcomes. However, the use of a patient-specific augment was associated with a higher frequency of achieving full shoulder joint range of motion, supporting the need for further evaluation of this technique.

About the authors

Ivan N. Marychev

Priorov National Medical Research Center of Traumatology and Orthopedics

Author for correspondence.
Email: dr.ivan.marychev@mail.ru
ORCID iD: 0000-0002-5268-4972
SPIN-code: 9151-7883
Russian Federation, Moscow

Yago G. Gudushauri

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: gogich71@mail.ru
ORCID iD: 0009-0002-1584-1999

MD, Dr. Sci. (Medicine)

Russian Federation, Moscow

Mikhail B. Tsykunov

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: rehcito@mail.ru
ORCID iD: 0000-0002-0994-8602
SPIN-code: 8298-8338

MD, Dr. Sci. (Medicine)

Russian Federation, Moscow

Evgeniy Yu. Fedotov

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: fedotovej@mail.ru
ORCID iD: 0009-0000-1965-4264

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Vyacheslav V. Konovalov

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: slava2801@yandex.ru
ORCID iD: 0000-0002-8954-9192
SPIN-code: 9552-2408

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Alexander D. Lamasov

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: lamasovsasha@gmail.com
ORCID iD: 0009-0008-3669-3167
Russian Federation, Moscow

Sergey S. Stoyukhin

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: Sergey.stoyukhin@gmail.com
ORCID iD: 0009-0009-8511-3613

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Ivan A. Chugreev

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: chugreevivan@gmail.com
ORCID iD: 0000-0002-2752-9620
SPIN-code: 4745-3836
Russian Federation, Moscow

References

  1. Dlyasin NG. Results of total shoulder replacement by the reversing construction Delta Xtend™. Traumatology and Orthopedics of Russia. 2011;(4):105–107. EDN: OXYZZN
  2. Ek ET, Neukom L, Catanzaro S, Gerber C. Reverse total shoulder arthroplasty for massive irreparable rotator cuff tears in patients younger than 65 years old: results after five to fifteen years. J Shoulder Elbow Surg. 2013;22(9):1199–1208. doi: 10.1016/j.jse.2012.11.016
  3. Frankle M, Marberry S, Pupello D, editors. Reverse shoulder arthroplasty. Cham: Springer; 2016. 486 p. doi: 10.1007/978-3-319-20840-4
  4. Zorya VI, Zaraiyskiy AS. Treatment of Shoulder Deforming Arthrosis. N.N. Priorov Journal of Traumatology and Orthopedics. 2011;(3):79–87. EDN: OJLPZZ
  5. Nenashev DV, Varfolomeev AP, Maykov SV. Analysis of long-term results of shoulder arthroplasty. Traumatology and Orthopedics of Russia. 2012;(2):71–78. EDN: OZPKCX
  6. Formaini NT, Everding NG, Levy JC, et al. The effect of glenoid bone loss on reverse shoulder arthroplasty baseplate fixation. J Shoulder Elbow Surg. 2015;24(11):e312–319. doi: 10.1016/j.jse.2015.05.045
  7. Kyriacou S, Khan S, Falworth M. The management of glenoid bone loss in shoulder arthroplasty. J Shoulder Elbow Surg. 2019;6(1):21–30. doi: 10.1016/j.jajs.2018.12.001
  8. Peretyaka AP, Maykov SV. Results of primary and revision reverse shoulder arthroplasty. Traumatology and Orthopedics of Russia. 2012;(4):93–98. EDN: PWPALB
  9. Patent RUS № 2569531/ 27.11.2015. Byul. № 333. Gregori TMS. Device for shoulder joint endoprosthetics. Available from: https://yandex.ru/patents/doc/RU2693363C2_20190702 EDN: YKFFBM
  10. Constant CR, Murley AH. A clinical method of functional assessment of the shoulder. Clin Orthop Relat Res. 1987;(214):160–164.
  11. Flury MP, Frey P, Goldhahn J, Schwyzer HK, Simmen BR. Reverse shoulder arthroplasty as a salvage procedure for failed conventional shoulder replacement due to cuff failuredmidterm results. Int Orthop. 2010;35(1):53–60. doi: 10.1007/s00264-010-0990-z
  12. Levy J, Frankle M, Mighell M, Pupello D. The use of the reverse shoulder prosthesis for the treatment of failed hemiarthroplasty for proximal humeral fracture. J Bone Joint Surg Am. 2007;89(2):292–300. doi: 10.2106/JBJS.E.01310
  13. Patent RUS № 2816448/ 29.03.2024. Gudushauri Y, Marychev I, Konovalov V, Fedotov E, Kalinin E. Method for surgical treatment of shoulder joint arthrosis with installation of reversible endoprosthesis metaglene. Available from: https://searchplatform.rospatent.gov.ru/doc/RU2816448C1_20240329 EDN: QPIVYK
  14. Patent RUS № 2827999/ 04.10.2024. Gudushauri Y, Marychev I, Konovalov V, Fedotov E, Stouhin S. Method for surgical treatment of shoulder joint arthrosis with installation of individual titanium augment. Available from: https://searchplatform.rospatent.gov.ru/doc/RU2827999C1_20241004 EDN: XCEXTH
  15. Michener LA, McClure PW, Sennett BJ. American Shoulder and Elbow Surgeons Standardized Shoulder Assessment Form, patient self-report section: reliability, validity, and responsiveness. J Shoulder Elb Surg. 2002;11(6):587–94. doi: 10.1067/mse.2002.127096
  16. Hudak PL, Amadio PC, Bombardier C. Development of an upper extremity outcome measure: the DASH (disabilities of the arm, shoulder and hand) [corrected]. The Upper Extremity Collaborative Group (UECG). Am J Ind Med. 1996;29(6):602–8. doi: 10.1002/(SICI)1097-0274(199606)29:6< 602::AID-AJIM4> 3.0.CO;2-L
  17. Amstutz HC, Sew Hoy AL, Clarke IC. UCLA anatomic total shoulder arthroplasty. Clin Orthop Relat Res. 1981;(155):7–20.
  18. Habermeyer P, Magosch P, Lichtenberg S. Classifications and Scores of the Shoulder. Berlin: Springer Berlin Heidelberg; 2006. 297 s.
  19. Kelly IG. The Practice of Shoulder Surgery. London: Butterworth-Heinemann Ltd.; 1993. 358 p.
  20. Lévigne C, Boileau P, Favard L, et al. Scapular notching in reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2008;17(6):925–35. doi: 10.1016/j.jse.2008.02.010
  21. Walch G, Badet R, Boulahia A, Khoury A. Morphologic study of the glenoid in primary glenohumeral osteoarthritis. J Arthroplast. 1999;14(6):756–60. doi: 10.1016/s0883-5403(99)90232-2
  22. Gascoyne TC, McRae SMB, Parashin SL, et al. Radiostereometric analysis of keeled versus pegged glenoid components in total shoulder arthroplasty: a randomized feasibility study. Can J Surg. 2017;60:273–9. doi: 10.1503/cjs.001817
  23. Nuttall D, Haines JF, Trail IA. The early migration of a partially cemented fluted pegged glenoid component using radiostereometric analysis. J Shoulder Elbow Surg. 2012;21:1191–6. doi: 10.1016/j.jse.2011.07.028
  24. Nuttall D, Haines JF, Trail II. A study of the micromovement of pegged and keeled glenoid components compared using radiostereometric analysis. J Shoulder Elbow Surg. 2007;16(Suppl 3):65–70. doi: 10.1016/j.jse.2006.01.015
  25. Rahme H, Mattsson P, Wikblad L, Nowak J, Larsson S. Stability of cemented in-line pegged glenoid compared with keeled glenoid components in total shoulder arthroplasty. J Bone Joint Surg Am. 2009;91:1965–72. doi: 10.2106/JBJS.H.00938
  26. Rahme H, Mattsson P, Larsson S. Stability of cemented all-polyethylene keeled glenoid components. J Bone Joint Surg Br. 2004;86:856–60. doi: 10.1302/0301-620X.86B6.14882
  27. Streit JJ, Shishani Y, Greene ME, et al. Radiostereometric and radiographic analysis of glenoid component motion after total shoulder arthroplasty. Orthopedics. 2015;38:e891–7. doi: 10.3928/01477447-20151002-56
  28. Farshad M, Gerber C. Reverse total shoulder arthroplasty-from the most to the least common complication. Int Orthop. 2010;34(8):1075–82. doi: 10.1007/s00264-010-1125-2
  29. Boileau P, Moineau G, Roussanne Y, O’Shea K. Bony increased-offset reversed shoulder arthroplasty: minimizing scapular impingement while maximizing glenoid fixation. Clin Orthop Relat Res. 2011;469(9):2558–67. doi: 10.1007/s11999-011-1775-4
  30. Crosby LA, Hamilton A, Twiss T. Scapula fractures after reverse total shoulder arthroplasty: classification and treatment. Clin Orthop Relat Res. 2011;469(9): 2544–9. doi: 10.1007/s11999-011-1881-3
  31. Mayne IP, Bell SN, Wright W, Coghlan JA. Acromial and scapular spine fractures after reverse total shoulder arthroplasty. Shoulder Elbow. 2016;8(2):90–100. doi: 10.1177/1758573216628783
  32. Scarlat MM. Complications with reverse total shoulder arthroplasty and recent evolutions. Int Orthop. 2013;37(5):843–51. doi: 10.1007/s00264-013-1832-6
  33. Henninger HB, Barg A, Anderson AE, et al. Effect of lateral offset center of rotation in reverse total shoulder arthroplasty: a biomechanical study. J Shoulder Elb Surg. 2012;21(9):1128–35. doi: 10.1016/j.jse.2011.07.034
  34. Athwal GS, Faber KJ. Outcomes of reverse shoulder arthroplasty using a mini 25-mm glenoid baseplate. Int Orthop. 2016;40(1):109–13. doi: 10.1007/s00264-015-2945-x
  35. Boileau P, Morin-Salvo N, Gauci MO, et al. Angled BIO-RSA (bony-increased offset-reverse shoulder arthroplasty): a solution for the management of glenoid bone loss and erosion. J Shoulder Elb Surg. 2017;26(12):2133–42. doi: 10.1016/j.jse.2017.05.024
  36. Nicholson GP, Strauss EJ, Sherman SL. Scapular notching: recognition and strategies to minimize clinical impact. Clin Orthop Relat Res. 2011;469(9):2521–30. doi: 10.1007/s11999-010-1720-y

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Modified Walch classification of glenoid defects in primary glenohumeral arthritis (author’s illustration). Type A, central glenoid erosion (A1, minimal erosion, A2, more significant bone loss); Type B, posterior subluxation of the humeral head (B1, joint space narrowing, subchondral sclerosis and osteophytes; B2, biconcave glenoid due to posterior rim erosion; B3, posterior rim erosion with pathological retroversion); Type C, pathological retroversion of the scapular articular surface; Type D, anterior rim erosion of the glenoid with anterior subluxation of the humeral head.

Download (135KB)
3. Fig. 2. Study design.

Download (368KB)
4. Fig. 3. Modeling of glenoid deformity and determination of the correct implantation axis of the metaglene (published with the permission of Endoprint).

Download (90KB)
5. Fig. 4. Prototype of the patient-specific augment and guide in the form of a 3D model (published with the permission of Endoprint).

Download (114KB)
6. Fig. 5. Patient-specific titanium augment and guide.

Download (98KB)
7. Fig. 6. Range of motion of patient K. before surgery.

Download (364KB)
8. Fig. 7. Computed tomography of the shoulder of patient K.

Download (184KB)
9. Fig. 8. Modeling of glenoid deformity and determination of the correct implantation axis of the metaglene in patient K. (published with the permission of Endoprint).

Download (103KB)
10. Fig. 9. Prototype of the patient-specific augment and guide in the form of a 3D model for patient K. (published with the permission of Endoprint).

Download (118KB)
11. Fig. 10. Patient-specific titanium augment and guide for patient K.

Download (181KB)
12. Fig. 11. Deformed glenoid of patient K.

Download (340KB)
13. Fig. 12. Patient-specific augment and surgical stages in patient K.

Download (412KB)
14. Fig. 13. Postoperative radiograph of patient K.

Download (96KB)
15. Fig. 14. Radiographic follow-up 1 year after surgery.

Download (86KB)
16. Fig. 15. Range of motion in the right shoulder joint of patient K. 1 year after surgery.

Download (260KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».