Potential use of SMART implants in traumatology and orthopedics: a review
- Authors: Dontsova O.A.1, Nazarenko A.G.2, Krupatkin A.I.2, Kuleshov A.A.2, Kleimyonova E.B.2, Vetrile M.S.2, Tairov G.N.2, Zavyalova E.G.1,3, Agina E.V.1,3, Kydralieva K.A.4, Syrchenko N.V.4, Khudalov T.T.2
-
Affiliations:
- Lomonosov Moscow State University
- Priorov National Medical Research Center of Traumatology and Orthopedics
- Enikolopov Institute of Synthetic Polymeric Materials Russian Academy of Sciences (ISPM RAS)
- Moscow Aviation Institute (National Research University)
- Issue: Vol 32, No 2 (2025)
- Pages: 493-505
- Section: Reviews
- URL: https://ogarev-online.ru/0869-8678/article/view/314755
- DOI: https://doi.org/10.17816/vto678583
- EDN: https://elibrary.ru/BLZDPH
- ID: 314755
Cite item
Abstract
This review presents current scientific data on the use of biosensors in traumatology and orthopedics. Biosensors are specialized devices that detect various physicochemical parameters in the body. These parameters can be used to monitor, predict, and manage a variety of processes in orthopedic and trauma care. Technological advances enable the integration of biosensors and the development of customized implants. Their introduction has marked a significant breakthrough in trauma and orthopedic surgery, particularly with the emergence of SMART (Self-Monitoring Analysis and Reporting Technology) implants, which integrate microchips, wireless connectivity, and data analysis algorithms.
With the expected increase in surgeries and the growing need for implants, technological progress in this field is bound to continue and accelerate. Existing issues such as implant instability, infectious complications, and nonunions further underscore the relevance of this topic and the need for further research.
This analytical review was conducted using medical scientific databases and search engines, including PubMed (MEDLINE), Google Scholar, and eLibrary. The review addresses the following aspects: relevance, types of biosensors, their clinical applications, and prospects in traumatology and orthopedics. The review aims to improve understanding of biosensor uses in this medical field.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Olga A. Dontsova
Lomonosov Moscow State University
Email: olga.a.dontsova@gmail.com
SPIN-code: 5557-0572
Dr. Sci. (Chemistry), Academician of the Russian Academy of Sciences
Russian Federation, MoscowAnton G. Nazarenko
Priorov National Medical Research Center of Traumatology and Orthopedics
Email: nazarenkoag@cito-priorov.ru
ORCID iD: 0000-0003-1314-2887
SPIN-code: 1402-5186
Corresponding Member of the Russian Academy of Sciences, MD, Dr. Sci. (Medicine), Professor of RAS
Russian Federation, 10 Priorova st, Moscow, 127299Alexander I. Krupatkin
Priorov National Medical Research Center of Traumatology and Orthopedics
Author for correspondence.
Email: krup.61@mail.ru
ORCID iD: 0000-0001-5582-5200
SPIN-code: 3671-5540
MD, Dr. Sci. (Medicine), Professor
Russian Federation, 10 Priorova st, Moscow, 127299Alexander A. Kuleshov
Priorov National Medical Research Center of Traumatology and Orthopedics
Email: cito-spine@mail.ru
ORCID iD: 0000-0002-9526-8274
SPIN-code: 7052-0220
MD, Dr. Sci. (Medicine)
Russian Federation, 10 Priorova st, Moscow, 127299Elena B. Kleimyonova
Priorov National Medical Research Center of Traumatology and Orthopedics
Email: KleymenovaEB@cito-priorov.ru
SPIN-code: 2037-7164
MD, Dr. Sci. (Medicine)
Russian Federation, 10 Priorova st, Moscow, 127299Marchel S. Vetrile
Priorov National Medical Research Center of Traumatology and Orthopedics
Email: vetrilams@cito-priorov.ru
ORCID iD: 0000-0001-6689-5220
SPIN-code: 9690-5117
MD, Cand. Sci. (Medicine)
Russian Federation, 10 Priorova st, Moscow, 127299Gazinur N. Tairov
Priorov National Medical Research Center of Traumatology and Orthopedics
Email: gazinur.vezunchik@mail.ru
ORCID iD: 0009-0002-3469-3944
SPIN-code: 8868-2577
MD
Russian Federation, 10 Priorova st, Moscow, 127299Elena G. Zavyalova
Lomonosov Moscow State University; Enikolopov Institute of Synthetic Polymeric Materials Russian Academy of Sciences (ISPM RAS)
Email: zlenka2006@gmail.com
ORCID iD: 0000-0001-5260-1973
Russian Federation, Moscow; Moscow
Elena V. Agina
Lomonosov Moscow State University; Enikolopov Institute of Synthetic Polymeric Materials Russian Academy of Sciences (ISPM RAS)
Email: werdas@mail.ru
ORCID iD: 0000-0001-5892-6752
Russian Federation, Moscow; Moscow
Kamilya A. Kydralieva
Moscow Aviation Institute (National Research University)
Email: k_kamila@mail.ru
Dr. Sci. (Chemistry), Academician of the Russian Academy of Sciences
Russian Federation, MoscowNikolay V. Syrchenko
Moscow Aviation Institute (National Research University)
Email: syrchenkonv@mai.ru
Russian Federation, Moscow
Taimuraz T. Khudalov
Priorov National Medical Research Center of Traumatology and Orthopedics
Email: khudalov@yandex.ru
MD
Russian Federation, 10 Priorova st, Moscow, 127299References
- Gil B, Hall TAG, Freeman DME, et al. Wireless implantable bioelectronics with a direct electron transfer lactate enzyme for detection of surgical site infection in orthopaedics. Biosens Bioelectron. 2024;263:116571. doi: 10.1016/j.bios.2024.116571
- Lum ZC, Natsuhara KM, Shelton TJ, et al. Mortality During Total Knee Periprosthetic Joint Infection. J Arthroplasty. 2018;33(12):3783–3788. doi: 10.1016/j.arth.2018.08.021
- Karipott SS, Veetil PM, Nelson BD, Guldberg RE, Ong KG. An Embedded Wireless Temperature Sensor for Orthopedic Implants. IEEE Sens J. 2018;18(3):1265–1272. doi: 10.1109/JSEN.2017.2780226
- Shohat N, Goswami K, Tan TL, et al. Fever and erythema are specific findings in detecting infection following total knee arthroplasty. J Bone Jt Infect. 2019;4(2):92–98. doi: 10.7150/jbji.30088
- Gil B, Lo B, Yang GZ, Anastasova S. Smart implanted access port catheter for therapy intervention with pH and lactate biosensors. Mater Today Bio. 2022;15:100298. doi: 10.1016/j.mtbio.2022.100298
- Zargartalebi H, Mirzaie S, GhavamiNejad A, et al. Active-reset protein sensors enable continuous in vivo monitoring of inflammation. Science. 2024;386(6726):1146–1153. doi: 10.1126/science.adn2600
- Tan N, van Arkel RJ. Topology optimisation for compliant hip implant design and reduced strain shielding. Materials (Basel). 2021;14(23):7184. doi: 10.3390/ma14237184
- Khizriev UI, Besedin AD, Klishin IV. Биосенсоры и их применение в медицинской диагностике Biosensors and Their Application in Medical Diagnostics. Vestnik UGMU. 2024;(3):57–65. EDN: FJHZRK
- Nielsen K, Yu WL, Kelly L, et al. Development of a lateral flow assay for rapid detection of bovine antibody to Anaplasma marginale. J Immunoass Immunochem. 2008;29(1):10–8. doi: 10.1080/15321810701734693
- Kuleshov BS, Zavyalova EG, Poymanova EYu, et al. Multisensors based on electrolyte-gated organic field-effect transistors with aptamers as recognition elements: current state of research. Russ Chem Rev. 2024;93(4):RCR5116. doi: 10.59761/RCR5116 EDN: GZWUBN
- Gupta U, Gupta V, Arun RK, Chanda N. Recent advances in enzymatic biosensors for point-of-care detection of biomolecules. Biotechnol Bioeng. 2022;119(12):3393–3407. doi: 10.1002/bit.28251
- Seshadri P, Manoli K, Schneiderhan-Marra N, et al. Low-picomolar, label-free procalcitonin analytical detection with an electrolyte-gated organic field-effect transistor based electronic immunosensor. Biosens Bioelectron. 2018;104:113–119. doi: 10.1016/j.bios.2017.12.041
- Adachi T, Nakamura Y. Aptamers: A review of their chemical properties and modifications for therapeutic application. Molecules. 2019;24(23):4229. doi: 10.3390/molecules24234229
- Araujo-Rocha M, Piro B, Noël V, Barbault F. Computational studies of a DNA-based aptasensor: toward theory-driven transduction improvement. J Phys Chem B. 2021;125(33):9499–9506. doi: 10.1021/acs.jpcb.1c05341
- Berto M, Vecchi E, Baiamonte L, et al. Label Free Detection of Plant Viruses with Organic Transistor Biosensors. Sens Actuators B Chem. 2019;281:150–156.
- Ricci S, Casalini S, Parkula V, et al. Label-free immunodetection of α-synuclein by using a microfluidics coplanar electrolyte-gated organic field-effect transistor. Biosens Bioelectron. 2020;167:112433. doi: 10.1016/j.bios.2020.112433
- Macchia E, Manoli K, Holzer B, et al. Single-molecule detection with a millimetre-sized transistor. Nat Commun. 2018;9(1):3223. doi: 10.1038/s41467-018-05235-z
- Ma F, Li Y, Tang B, Zhang CY. Fluorescent biosensors based on single-molecule counting. Acс Chem Res. 2016;49(9):1722–30. doi: 10.1021/acs.accounts.6b00237
- Zhang K, Liu G, Goldys EM. Robust immunosensing system based on biotin-streptavidin coupling for spatially localized femtogram mL−1 level detection of interleukin-6. Biosens Bioelectron. 2018;102:80–86. doi: 10.1016/j.bios.2017.11.023
- Cho IH, Kim DH, Park S. Electrochemical biosensors: Perspective on functional nanomaterials for on-site analysis. Biomater Res. 2020;24:6. doi: 10.1186/s40824-019-0181-y
- Poimanova EY, Kretova EA, Keshek AK, et al. Universal approach to fabrication of reusable egofet-based aptasensors with track-etched membranes for biorecognition layer. J Mater Chem B. 2025;13(15):4681–4692. doi: 10.1039/d4tb02536a
- Poimanova EY, Zavyalova E, Kretova EA, et al. Quantitative detection of the influenza a virus by an EGOFET-based portable device. Chemosensors. 2023;11(8):464. doi: 10.3390/chemosensors11080464
- Sequeira-Antunes B, Ferreira HA. Nucleic acid aptamer-based biosensors: a review. Biomedicines. 2023;11(12):3201. doi: 10.3390/biomedicines11123201
- Chow AW. Lab-on-Chip: Opportunities for chemical engineering. Am Inst Chem Eng AIChE J. 2002;48(8):1590.,
- Sun C, Feng G, Song Y, et al. Single molecule level and label-free determination of multibiomarkers with an organic field-effect transistor platform in early cancer diagnosis. Anal Chem. 2022;94(17):6615–6620. doi: 10.1021/acs.analchem.2c00897
- Casalini S, Leonardi F, Cramer T, Biscarini F. Organic field-effect transistor for label-free dopamine sensing. Org Electron. 2013;14(1):156–163. doi: 10.1016/j.orgel.2012.10.027
- Sawayama J, Okitsu T, Nakamata A, Kawahara Y, Takeuchi S. Hydrogel glucose sensor with in vivo stable fluorescence intensity relying on antioxidant enzymes for continuous glucose monitoring. iScience. 2020;23(6):101243. doi: 10.1016/j.isci.2020.101243
- Zhao C, Man T, Cao Y, et al. Flexible and implantable polyimide aptamer-field-effect transistor biosensors. ACS sensors. 2022;7(12):3644–3653. doi: 10.1021/acssensors.2c01909
- Edward R, Priefer R. A comparison of continuous glucose monitors (CGMs) in diabetes management: A systematic literature review. Prim Care Diabetes. 2023:S1751-9918(23)00178-X. doi: 10.1016/j.pcd.2023.10.009
- Nicholson JA, Makaram N, Simpson A, Keating JF. Fracture nonunion in long bones: A literature review of risk factors and surgical management. Injury. 2021;52 Suppl 2:S3–S11. doi: 10.1016/j.injury.2020.11.029
- Ledet EH, Liddle B, Kradinova K, Harper S. Smart implants in orthopedic surgery, improving patient outcomes: a review. Innov Entrep Health. 2018;5:41–51. doi: 10.2147/ieh.s133518
- Morshed S, Corrales L, Genant H, Miclau T 3rd. Outcome assessment in clinical trials of fracture-healing. J Bone Joint Surg Am. 2008;90 Suppl 1:62–7. doi: 10.2106/JBJS.G.01556
- Davis BJ, Roberts PJ, Moorcroft CI, et al. Reliability of radiographs in defining union of internally fixed fractures. Injury. 2004;35(6):557–61. doi: 10.1016/S0020-1383(03)00262-6
- McClelland D, Thomas PB, Bancroft G, Moorcraft CI. Fracture healing assessment comparing stiffness measurements using radiographs. Clin Orthop Relat Res. 2007;457:214–9. doi: 10.1097/BLO.0b013e31802f80a8
- Mills LA, Aitken SA, Simpson AHRW. The risk of non-union per fracture: current myths and revised figures from a population of over 4 million adults. Acta Orthop. 2017;88(4):434–439. doi: 10.1080/17453674.2017.1321351
- Iyengar KP, Kariya AD, Botchu R, Jain VK, Vaishya R. Significant capabilities of SMART sensor technology and their applications for Industry 4.0 in trauma and orthopaedics. Sensors Int. 2022;3:100163. doi: 10.1016/j.sintl.2022.100163
- Bizzoca D, Vicenti G, Caiaffa V, et al. Assessment of fracture healing in orthopaedic trauma. Injury. 2023;54 Suppl 1:S46–S52. doi: 10.1016/j.injury.2020.11.014
- Kienast B, Kowald B, Seide K, et al. An electronically instrumented internal fixator for the assessment of bone healing. Bone Jt Res. 2016;5(5):191–7. doi: 10.1302/2046-3758.55.2000611
- McGilvray KC, Unal E, Troyer KL, et al. Implantable microelectromechanical sensors for diagnostic monitoring and post-surgical prediction of bone fracture healing. J Orthop Res. 2015;33(10):1439–46. doi: 10.1002/jor.22918
- Borchani W, Aono K, Lajnef N, Chakrabartty S. Monitoring of Postoperative Bone Healing Using Smart Trauma-Fixation Device with Integrated Self-Powered Piezo-Floating-Gate Sensors. IEEE Trans Biomed Eng. 2016;63(7):1463–72. doi: 10.1109/TBME.2015.2496237
- Arciola CR, Campoccia D, Montanaro L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018;16(7):397–409. doi: 10.1038/s41579-018-0019-y
- Yocum D, Housholder E, Yergler J. Manipulation under Anesthesia Following TKA with Persona IQ: A Case Series. J Orthop Case Rep. 2023;13(8):127–131. doi: 10.13107/jocr.2023.v13.i08.3844
- Kelmers E, Szuba A, King SW, et al. ‘Smart Knee Implants: An Overview of Current Technologies and Future Possibilities’. Indian J Orthop. 2022;57(5):635–642. doi: 10.1007/s43465-022-00810-5
- Zimmer Biomet. Persona IQ Brochure: Robotic-assisted solutions for knee replacement. Internal document, n.d.
- Yocum D, Elashoff B, Verta P., et al. Patient reported outcomes do not correlate to functional knee recovery and range of motion in total knee arthroplasty. J Orthop. 2023;43:36–40. doi: 10.1016/j.jor.2023.07.009
- Schumacher N, Geiger F, Spors S, et al. Detection of Total Hip Replacement Loosening Based on Structure-Borne Sound: Influence of the Position of the Sensor on the Hip Stem. Sensors. 2024;24(14):4594. doi: 10.3390/s24144594
- Mohammadbagherpoor H, Ierymenko P, Craver MH, et al. An implantable wireless inductive sensor system designed to monitor prosthesis motion in total joint replacement surgery. IEEE Trans Biomed Eng. 2020;67(6):1718–1726. doi: 10.1109/TBME.2019.2943808
- Liao YS, Benya PD, McKellop HA. Effect of protein lubrication on the wear properties of materials for prosthetic joints. J Biomed Mater Res. 1999;48(4):465–73. doi: 10.1002/(sici)1097-4636(1999)48:4<465::aid-jbm10>3.0.co;2-y
- Bergmann G, Graichen F, Dymke J, et al. High-tech hip implant for wireless temperature measurements in vivo. PLoS One. 2012;7(8):e43489. doi: 10.1371/journal.pone.0043489
- Ibrahim A, Jain M, Salman E, Willing R, Towfighian S. A smart knee implant using triboelectric energy harvesters. Smart Mater Struct. 2019;28(2):025040. doi: 10.1088/1361-665X/aaf3f1
- Rohlmann A, Bergmann G, Graichen F. A spinal fixation device for in vivo load measurement. J Biomech. 1994;27(7):961–7. doi: 10.1016/0021-9290(94)90268-2
- Kim SJ, Wang T, Pelletier MH, Walsh WR. ‘SMART’ implantable devices for spinal implants: a systematic review on current and future trends. J Spine Surg. 2022;8(1):117–131. doi: 10.21037/jss-21-100
- Viswanathan VK, Jain VK, Sangani C, et al. SMART (self-monitoring analysis and reporting technology) and sensor based technology applications in trauma and orthopaedic surgery. J Orthop. 2023;44:113–118. doi: 10.1016/j.jor.2023.09.006
- Boutry CM, Kaizawa Y, Schroeder BC, et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat Electron. 2018;1(5):314–321. doi: 10.1038/s41928-018-0071-7
- Saini N, Kundnani V, Patni P, Gupta S. Outcome of early active mobilization after flexor tendons repair in zones II–V in hand. Indian J Orthop. 2010;44(3):314–21. doi: 10.4103/0019-5413.65155
- Bogaerts S, Desmet H, Slagmolen P, Peers K. Strain mapping in the Achilles tendon — A systematic review. J Biomech. 2016;49(9):1411–1419. doi: 10.1016/j.jbiomech.2016.02.057
- Dzhardimalieva GI, Kydralieva KA, Uflyand IE. Bioinspired and biomimetic self-healing materials. 10 breakthrough ideas in the energy sector for the next 10 years. Global’naya energiya. 2023:63–85. (in Russ.).
- Baimuratova RK, Dzhardimalieva GI, Vaganov EV, et al. Novel Self-Healing Metallocopolymers with Pendent 4-Phenyl-2, 2': 6', 2 "-Terpyridine Ligand: Kinetic Studies and Mechanical Properties. Polymers (Basel). 2021;13(11):1760. doi: 10.3390/polym13111760
- Tan YJ, Wu J, Li H, Tee BCK. Self-healing electronic materials for a smart and sustainable future. ACS Appl Mater Interfaces. 2018;10(18):15331–15345. doi: 10.1021/acsami.7b19511
- Han L, Lu X, Wang M, et al. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small. 2017;13(2). doi: 10.1002/smll.201601916
- Dzhardimalieva GI, Yadav BC, Singh S, Uflyand IE. Self-healing and shape memory metallopolymers: state-of-the-art and future perspectives. Dalt Trans. 2020;49(10):3042–3087. doi: 10.1039/c9dt04360h
- Lai Y, Wu H, Lin H, et al. Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self-powered electronic skins. Adv Funct Mater. 2019;29(40):1904626. doi: 10.1002/adfm.201904626
- Irzhak VI, Uflyand IE, Dzhardimalieva GI. Self-healing of polymers and polymer composites. Polymers (Basel). 2022;14(24):5404. doi: 10.3390/polym14245404
- Kratasyuk VA. The principle of luciferase biotesting. Proceeding of the First International School ‘Biological Luminescence’; 1990. 550 р. (in Russ.).
- Esimbekova EN, Kalyabina VP, Kopylova KV, Torgashina IG, Kratasyuk VA. Design of bioluminescent biosensors for assessing contamination of complex matrices. Talanta. 2021;233:122509. doi: 10.1016/j.talanta.2021.122509
- Esimbekova EN, Kalyabina VP, Kratasyuk VA. Enzymatic Biotesting: Scientific Basis and Application. Contemporary Problems of Ecology. 2021;14(3):290–302. doi: 10.1134/s1995425521030069
- Deeva AA, Zykova EA, Nemtseva EV, Kratasyuk VA. Functional divergence between LuxG and Fre oxidoreductases. Proteins. 2019;87(9):723–729. doi: 10.1002/prot.25696
- Kratasyuk VA, Gigelzon II. The use of luminous bacteria in bioluminescent analysis. Uspekhi mikrobiologii. 1987;21(1):3–30. (in Russ.). EDN: WZHDKH
- Rimashevskaya AA, Muchkina EY, Sutormin OS, et al. Bioluminescence Inhibition Bioassay for Snow Cover Estimation. Forests. 2024;15(8):1325. doi: 10.3390/f15071325
- Kratasyuk VA, Kolosova EM, Sutormin OS, et al. Software for Matching Standard Activity Enzyme Biosensors. Sensors. 2021;21(3):1017. doi: 10.3390/s21031017
- Esimbekova EN, Kalyabina VP, Kopylova KV, Torgashina IG, Kratasyuk VA. Design of bioluminescent biosensors for assessing contamination of complex matrices. Talanta. 2021;233:122509. doi: 10.1016/j.talanta.2021.122509
Supplementary files
