Potential use of SMART implants in traumatology and orthopedics: a review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review presents current scientific data on the use of biosensors in traumatology and orthopedics. Biosensors are specialized devices that detect various physicochemical parameters in the body. These parameters can be used to monitor, predict, and manage a variety of processes in orthopedic and trauma care. Technological advances enable the integration of biosensors and the development of customized implants. Their introduction has marked a significant breakthrough in trauma and orthopedic surgery, particularly with the emergence of SMART (Self-Monitoring Analysis and Reporting Technology) implants, which integrate microchips, wireless connectivity, and data analysis algorithms.

With the expected increase in surgeries and the growing need for implants, technological progress in this field is bound to continue and accelerate. Existing issues such as implant instability, infectious complications, and nonunions further underscore the relevance of this topic and the need for further research.

This analytical review was conducted using medical scientific databases and search engines, including PubMed (MEDLINE), Google Scholar, and eLibrary. The review addresses the following aspects: relevance, types of biosensors, their clinical applications, and prospects in traumatology and orthopedics. The review aims to improve understanding of biosensor uses in this medical field.

About the authors

Olga A. Dontsova

Lomonosov Moscow State University

Email: olga.a.dontsova@gmail.com
SPIN-code: 5557-0572

Dr. Sci. (Chemistry), Academician of the Russian Academy of Sciences

Russian Federation, Moscow

Anton G. Nazarenko

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: nazarenkoag@cito-priorov.ru
ORCID iD: 0000-0003-1314-2887
SPIN-code: 1402-5186

Corresponding Member of the Russian Academy of Sciences, MD, Dr. Sci. (Medicine), Professor of RAS

Russian Federation, 10 Priorova st, Moscow, 127299

Alexander I. Krupatkin

Priorov National Medical Research Center of Traumatology and Orthopedics

Author for correspondence.
Email: krup.61@mail.ru
ORCID iD: 0000-0001-5582-5200
SPIN-code: 3671-5540

MD, Dr. Sci. (Medicine), Professor

Russian Federation, 10 Priorova st, Moscow, 127299

Alexander A. Kuleshov

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: cito-spine@mail.ru
ORCID iD: 0000-0002-9526-8274
SPIN-code: 7052-0220

MD, Dr. Sci. (Medicine)

Russian Federation, 10 Priorova st, Moscow, 127299

Elena B. Kleimyonova

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: KleymenovaEB@cito-priorov.ru
SPIN-code: 2037-7164

MD, Dr. Sci. (Medicine)

Russian Federation, 10 Priorova st, Moscow, 127299

Marchel S. Vetrile

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: vetrilams@cito-priorov.ru
ORCID iD: 0000-0001-6689-5220
SPIN-code: 9690-5117

MD, Cand. Sci. (Medicine)

Russian Federation, 10 Priorova st, Moscow, 127299

Gazinur N. Tairov

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: gazinur.vezunchik@mail.ru
ORCID iD: 0009-0002-3469-3944
SPIN-code: 8868-2577

MD

Russian Federation, 10 Priorova st, Moscow, 127299

Elena G. Zavyalova

Lomonosov Moscow State University; Enikolopov Institute of Synthetic Polymeric Materials Russian Academy of Sciences (ISPM RAS)

Email: zlenka2006@gmail.com
ORCID iD: 0000-0001-5260-1973
Russian Federation, Moscow; Moscow

Elena V. Agina

Lomonosov Moscow State University; Enikolopov Institute of Synthetic Polymeric Materials Russian Academy of Sciences (ISPM RAS)

Email: werdas@mail.ru
ORCID iD: 0000-0001-5892-6752
Russian Federation, Moscow; Moscow

Kamilya A. Kydralieva

Moscow Aviation Institute (National Research University)

Email: k_kamila@mail.ru

Dr. Sci. (Chemistry), Academician of the Russian Academy of Sciences

Russian Federation, Moscow

Nikolay V. Syrchenko

Moscow Aviation Institute (National Research University)

Email: syrchenkonv@mai.ru
Russian Federation, Moscow

Taimuraz T. Khudalov

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: khudalov@yandex.ru

MD

Russian Federation, 10 Priorova st, Moscow, 127299

References

  1. Gil B, Hall TAG, Freeman DME, et al. Wireless implantable bioelectronics with a direct electron transfer lactate enzyme for detection of surgical site infection in orthopaedics. Biosens Bioelectron. 2024;263:116571. doi: 10.1016/j.bios.2024.116571
  2. Lum ZC, Natsuhara KM, Shelton TJ, et al. Mortality During Total Knee Periprosthetic Joint Infection. J Arthroplasty. 2018;33(12):3783–3788. doi: 10.1016/j.arth.2018.08.021
  3. Karipott SS, Veetil PM, Nelson BD, Guldberg RE, Ong KG. An Embedded Wireless Temperature Sensor for Orthopedic Implants. IEEE Sens J. 2018;18(3):1265–1272. doi: 10.1109/JSEN.2017.2780226
  4. Shohat N, Goswami K, Tan TL, et al. Fever and erythema are specific findings in detecting infection following total knee arthroplasty. J Bone Jt Infect. 2019;4(2):92–98. doi: 10.7150/jbji.30088
  5. Gil B, Lo B, Yang GZ, Anastasova S. Smart implanted access port catheter for therapy intervention with pH and lactate biosensors. Mater Today Bio. 2022;15:100298. doi: 10.1016/j.mtbio.2022.100298
  6. Zargartalebi H, Mirzaie S, GhavamiNejad A, et al. Active-reset protein sensors enable continuous in vivo monitoring of inflammation. Science. 2024;386(6726):1146–1153. doi: 10.1126/science.adn2600
  7. Tan N, van Arkel RJ. Topology optimisation for compliant hip implant design and reduced strain shielding. Materials (Basel). 2021;14(23):7184. doi: 10.3390/ma14237184
  8. Khizriev UI, Besedin AD, Klishin IV. Биосенсоры и их применение в медицинской диагностике Biosensors and Their Application in Medical Diagnostics. Vestnik UGMU. 2024;(3):57–65. EDN: FJHZRK
  9. Nielsen K, Yu WL, Kelly L, et al. Development of a lateral flow assay for rapid detection of bovine antibody to Anaplasma marginale. J Immunoass Immunochem. 2008;29(1):10–8. doi: 10.1080/15321810701734693
  10. Kuleshov BS, Zavyalova EG, Poymanova EYu, et al. Multisensors based on electrolyte-gated organic field-effect transistors with aptamers as recognition elements: current state of research. Russ Chem Rev. 2024;93(4):RCR5116. doi: 10.59761/RCR5116 EDN: GZWUBN
  11. Gupta U, Gupta V, Arun RK, Chanda N. Recent advances in enzymatic biosensors for point-of-care detection of biomolecules. Biotechnol Bioeng. 2022;119(12):3393–3407. doi: 10.1002/bit.28251
  12. Seshadri P, Manoli K, Schneiderhan-Marra N, et al. Low-picomolar, label-free procalcitonin analytical detection with an electrolyte-gated organic field-effect transistor based electronic immunosensor. Biosens Bioelectron. 2018;104:113–119. doi: 10.1016/j.bios.2017.12.041
  13. Adachi T, Nakamura Y. Aptamers: A review of their chemical properties and modifications for therapeutic application. Molecules. 2019;24(23):4229. doi: 10.3390/molecules24234229
  14. Araujo-Rocha M, Piro B, Noël V, Barbault F. Computational studies of a DNA-based aptasensor: toward theory-driven transduction improvement. J Phys Chem B. 2021;125(33):9499–9506. doi: 10.1021/acs.jpcb.1c05341
  15. Berto M, Vecchi E, Baiamonte L, et al. Label Free Detection of Plant Viruses with Organic Transistor Biosensors. Sens Actuators B Chem. 2019;281:150–156.
  16. Ricci S, Casalini S, Parkula V, et al. Label-free immunodetection of α-synuclein by using a microfluidics coplanar electrolyte-gated organic field-effect transistor. Biosens Bioelectron. 2020;167:112433. doi: 10.1016/j.bios.2020.112433
  17. Macchia E, Manoli K, Holzer B, et al. Single-molecule detection with a millimetre-sized transistor. Nat Commun. 2018;9(1):3223. doi: 10.1038/s41467-018-05235-z
  18. Ma F, Li Y, Tang B, Zhang CY. Fluorescent biosensors based on single-molecule counting. Acс Chem Res. 2016;49(9):1722–30. doi: 10.1021/acs.accounts.6b00237
  19. Zhang K, Liu G, Goldys EM. Robust immunosensing system based on biotin-streptavidin coupling for spatially localized femtogram mL−1 level detection of interleukin-6. Biosens Bioelectron. 2018;102:80–86. doi: 10.1016/j.bios.2017.11.023
  20. Cho IH, Kim DH, Park S. Electrochemical biosensors: Perspective on functional nanomaterials for on-site analysis. Biomater Res. 2020;24:6. doi: 10.1186/s40824-019-0181-y
  21. Poimanova EY, Kretova EA, Keshek AK, et al. Universal approach to fabrication of reusable egofet-based aptasensors with track-etched membranes for biorecognition layer. J Mater Chem B. 2025;13(15):4681–4692. doi: 10.1039/d4tb02536a
  22. Poimanova EY, Zavyalova E, Kretova EA, et al. Quantitative detection of the influenza a virus by an EGOFET-based portable device. Chemosensors. 2023;11(8):464. doi: 10.3390/chemosensors11080464
  23. Sequeira-Antunes B, Ferreira HA. Nucleic acid aptamer-based biosensors: a review. Biomedicines. 2023;11(12):3201. doi: 10.3390/biomedicines11123201
  24. Chow AW. Lab-on-Chip: Opportunities for chemical engineering. Am Inst Chem Eng AIChE J. 2002;48(8):1590.,
  25. Sun C, Feng G, Song Y, et al. Single molecule level and label-free determination of multibiomarkers with an organic field-effect transistor platform in early cancer diagnosis. Anal Chem. 2022;94(17):6615–6620. doi: 10.1021/acs.analchem.2c00897
  26. Casalini S, Leonardi F, Cramer T, Biscarini F. Organic field-effect transistor for label-free dopamine sensing. Org Electron. 2013;14(1):156–163. doi: 10.1016/j.orgel.2012.10.027
  27. Sawayama J, Okitsu T, Nakamata A, Kawahara Y, Takeuchi S. Hydrogel glucose sensor with in vivo stable fluorescence intensity relying on antioxidant enzymes for continuous glucose monitoring. iScience. 2020;23(6):101243. doi: 10.1016/j.isci.2020.101243
  28. Zhao C, Man T, Cao Y, et al. Flexible and implantable polyimide aptamer-field-effect transistor biosensors. ACS sensors. 2022;7(12):3644–3653. doi: 10.1021/acssensors.2c01909
  29. Edward R, Priefer R. A comparison of continuous glucose monitors (CGMs) in diabetes management: A systematic literature review. Prim Care Diabetes. 2023:S1751-9918(23)00178-X. doi: 10.1016/j.pcd.2023.10.009
  30. Nicholson JA, Makaram N, Simpson A, Keating JF. Fracture nonunion in long bones: A literature review of risk factors and surgical management. Injury. 2021;52 Suppl 2:S3–S11. doi: 10.1016/j.injury.2020.11.029
  31. Ledet EH, Liddle B, Kradinova K, Harper S. Smart implants in orthopedic surgery, improving patient outcomes: a review. Innov Entrep Health. 2018;5:41–51. doi: 10.2147/ieh.s133518
  32. Morshed S, Corrales L, Genant H, Miclau T 3rd. Outcome assessment in clinical trials of fracture-healing. J Bone Joint Surg Am. 2008;90 Suppl 1:62–7. doi: 10.2106/JBJS.G.01556
  33. Davis BJ, Roberts PJ, Moorcroft CI, et al. Reliability of radiographs in defining union of internally fixed fractures. Injury. 2004;35(6):557–61. doi: 10.1016/S0020-1383(03)00262-6
  34. McClelland D, Thomas PB, Bancroft G, Moorcraft CI. Fracture healing assessment comparing stiffness measurements using radiographs. Clin Orthop Relat Res. 2007;457:214–9. doi: 10.1097/BLO.0b013e31802f80a8
  35. Mills LA, Aitken SA, Simpson AHRW. The risk of non-union per fracture: current myths and revised figures from a population of over 4 million adults. Acta Orthop. 2017;88(4):434–439. doi: 10.1080/17453674.2017.1321351
  36. Iyengar KP, Kariya AD, Botchu R, Jain VK, Vaishya R. Significant capabilities of SMART sensor technology and their applications for Industry 4.0 in trauma and orthopaedics. Sensors Int. 2022;3:100163. doi: 10.1016/j.sintl.2022.100163
  37. Bizzoca D, Vicenti G, Caiaffa V, et al. Assessment of fracture healing in orthopaedic trauma. Injury. 2023;54 Suppl 1:S46–S52. doi: 10.1016/j.injury.2020.11.014
  38. Kienast B, Kowald B, Seide K, et al. An electronically instrumented internal fixator for the assessment of bone healing. Bone Jt Res. 2016;5(5):191–7. doi: 10.1302/2046-3758.55.2000611
  39. McGilvray KC, Unal E, Troyer KL, et al. Implantable microelectromechanical sensors for diagnostic monitoring and post-surgical prediction of bone fracture healing. J Orthop Res. 2015;33(10):1439–46. doi: 10.1002/jor.22918
  40. Borchani W, Aono K, Lajnef N, Chakrabartty S. Monitoring of Postoperative Bone Healing Using Smart Trauma-Fixation Device with Integrated Self-Powered Piezo-Floating-Gate Sensors. IEEE Trans Biomed Eng. 2016;63(7):1463–72. doi: 10.1109/TBME.2015.2496237
  41. Arciola CR, Campoccia D, Montanaro L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018;16(7):397–409. doi: 10.1038/s41579-018-0019-y
  42. Yocum D, Housholder E, Yergler J. Manipulation under Anesthesia Following TKA with Persona IQ: A Case Series. J Orthop Case Rep. 2023;13(8):127–131. doi: 10.13107/jocr.2023.v13.i08.3844
  43. Kelmers E, Szuba A, King SW, et al. ‘Smart Knee Implants: An Overview of Current Technologies and Future Possibilities’. Indian J Orthop. 2022;57(5):635–642. doi: 10.1007/s43465-022-00810-5
  44. Zimmer Biomet. Persona IQ Brochure: Robotic-assisted solutions for knee replacement. Internal document, n.d.
  45. Yocum D, Elashoff B, Verta P., et al. Patient reported outcomes do not correlate to functional knee recovery and range of motion in total knee arthroplasty. J Orthop. 2023;43:36–40. doi: 10.1016/j.jor.2023.07.009
  46. Schumacher N, Geiger F, Spors S, et al. Detection of Total Hip Replacement Loosening Based on Structure-Borne Sound: Influence of the Position of the Sensor on the Hip Stem. Sensors. 2024;24(14):4594. doi: 10.3390/s24144594
  47. Mohammadbagherpoor H, Ierymenko P, Craver MH, et al. An implantable wireless inductive sensor system designed to monitor prosthesis motion in total joint replacement surgery. IEEE Trans Biomed Eng. 2020;67(6):1718–1726. doi: 10.1109/TBME.2019.2943808
  48. Liao YS, Benya PD, McKellop HA. Effect of protein lubrication on the wear properties of materials for prosthetic joints. J Biomed Mater Res. 1999;48(4):465–73. doi: 10.1002/(sici)1097-4636(1999)48:4<465::aid-jbm10>3.0.co;2-y
  49. Bergmann G, Graichen F, Dymke J, et al. High-tech hip implant for wireless temperature measurements in vivo. PLoS One. 2012;7(8):e43489. doi: 10.1371/journal.pone.0043489
  50. Ibrahim A, Jain M, Salman E, Willing R, Towfighian S. A smart knee implant using triboelectric energy harvesters. Smart Mater Struct. 2019;28(2):025040. doi: 10.1088/1361-665X/aaf3f1
  51. Rohlmann A, Bergmann G, Graichen F. A spinal fixation device for in vivo load measurement. J Biomech. 1994;27(7):961–7. doi: 10.1016/0021-9290(94)90268-2
  52. Kim SJ, Wang T, Pelletier MH, Walsh WR. ‘SMART’ implantable devices for spinal implants: a systematic review on current and future trends. J Spine Surg. 2022;8(1):117–131. doi: 10.21037/jss-21-100
  53. Viswanathan VK, Jain VK, Sangani C, et al. SMART (self-monitoring analysis and reporting technology) and sensor based technology applications in trauma and orthopaedic surgery. J Orthop. 2023;44:113–118. doi: 10.1016/j.jor.2023.09.006
  54. Boutry CM, Kaizawa Y, Schroeder BC, et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat Electron. 2018;1(5):314–321. doi: 10.1038/s41928-018-0071-7
  55. Saini N, Kundnani V, Patni P, Gupta S. Outcome of early active mobilization after flexor tendons repair in zones II–V in hand. Indian J Orthop. 2010;44(3):314–21. doi: 10.4103/0019-5413.65155
  56. Bogaerts S, Desmet H, Slagmolen P, Peers K. Strain mapping in the Achilles tendon — A systematic review. J Biomech. 2016;49(9):1411–1419. doi: 10.1016/j.jbiomech.2016.02.057
  57. Dzhardimalieva GI, Kydralieva KA, Uflyand IE. Bioinspired and biomimetic self-healing materials. 10 breakthrough ideas in the energy sector for the next 10 years. Global’naya energiya. 2023:63–85. (in Russ.).
  58. Baimuratova RK, Dzhardimalieva GI, Vaganov EV, et al. Novel Self-Healing Metallocopolymers with Pendent 4-Phenyl-2, 2': 6', 2 "-Terpyridine Ligand: Kinetic Studies and Mechanical Properties. Polymers (Basel). 2021;13(11):1760. doi: 10.3390/polym13111760
  59. Tan YJ, Wu J, Li H, Tee BCK. Self-healing electronic materials for a smart and sustainable future. ACS Appl Mater Interfaces. 2018;10(18):15331–15345. doi: 10.1021/acsami.7b19511
  60. Han L, Lu X, Wang M, et al. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small. 2017;13(2). doi: 10.1002/smll.201601916
  61. Dzhardimalieva GI, Yadav BC, Singh S, Uflyand IE. Self-healing and shape memory metallopolymers: state-of-the-art and future perspectives. Dalt Trans. 2020;49(10):3042–3087. doi: 10.1039/c9dt04360h
  62. Lai Y, Wu H, Lin H, et al. Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self-powered electronic skins. Adv Funct Mater. 2019;29(40):1904626. doi: 10.1002/adfm.201904626
  63. Irzhak VI, Uflyand IE, Dzhardimalieva GI. Self-healing of polymers and polymer composites. Polymers (Basel). 2022;14(24):5404. doi: 10.3390/polym14245404
  64. Kratasyuk VA. The principle of luciferase biotesting. Proceeding of the First International School ‘Biological Luminescence’; 1990. 550 р. (in Russ.).
  65. Esimbekova EN, Kalyabina VP, Kopylova KV, Torgashina IG, Kratasyuk VA. Design of bioluminescent biosensors for assessing contamination of complex matrices. Talanta. 2021;233:122509. doi: 10.1016/j.talanta.2021.122509
  66. Esimbekova EN, Kalyabina VP, Kratasyuk VA. Enzymatic Biotesting: Scientific Basis and Application. Contemporary Problems of Ecology. 2021;14(3):290–302. doi: 10.1134/s1995425521030069
  67. Deeva AA, Zykova EA, Nemtseva EV, Kratasyuk VA. Functional divergence between LuxG and Fre oxidoreductases. Proteins. 2019;87(9):723–729. doi: 10.1002/prot.25696
  68. Kratasyuk VA, Gigelzon II. The use of luminous bacteria in bioluminescent analysis. Uspekhi mikrobiologii. 1987;21(1):3–30. (in Russ.). EDN: WZHDKH
  69. Rimashevskaya AA, Muchkina EY, Sutormin OS, et al. Bioluminescence Inhibition Bioassay for Snow Cover Estimation. Forests. 2024;15(8):1325. doi: 10.3390/f15071325
  70. Kratasyuk VA, Kolosova EM, Sutormin OS, et al. Software for Matching Standard Activity Enzyme Biosensors. Sensors. 2021;21(3):1017. doi: 10.3390/s21031017
  71. Esimbekova EN, Kalyabina VP, Kopylova KV, Torgashina IG, Kratasyuk VA. Design of bioluminescent biosensors for assessing contamination of complex matrices. Talanta. 2021;233:122509. doi: 10.1016/j.talanta.2021.122509

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Cross-sectional view of a modified hip joint endoprosthesis model. Temperature telemetry with thermistor, electronic circuitry and power/data coil are located inside the implant neck [49].

Download (165KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».